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Abstract
Translating items of educational tests from one language to another is problematic. 
Arriving at accurate translations of concepts formulated in a language that is 
grammatically and syntactically incommensurable with a target language is a concern 
that probably won’t find resolution. And the very act of translation can obscure the 
accuracy of test items. Item Response Theory holds that only the ability of people 
tested and the difficulty of items should have an effect on the dataset. We report on an 
instance where a test was translated from German to English and then into isiZulu and 
Sesotho. We tested 106 pupils from similar socio economic backgrounds and schools. 
Our aim is to determine whether the translation had any effect on the accuracy of the 
instrument, which has been normed and standardised in Germany with a sample of 
0ver 1000 grade 1 pupils.
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Introduction: signs and signified in the translation of a test 
Translated items of educational diagnostic tests are likely to come with a host of 
possible problems. In any translation these may extend beyond the issues associated 
with trying to arrive at an approximate equation of meaning from the original to the 
translated text. Translation, particularly in the case of languages that exhibit little 
commonality, is, by force, constrained. The constraint is due not only to disparate 
representational systems, each with their own grammar, syntax and lexicon, but 
more problematically to pre-linguistic epistemological stores that are determined and 
defined by different geo-cultural points of reference that are captured in different 
languages as systems of signs (Benjamin, 1997; Jakobson, 1959; Gopnik and Meltzhoff, 
1997). Any given language is involved in the continued production and naming of 
new concepts that will in the end be expressed through its system of signs (Evans & 
Levinson, 2009; Levinson, 2003). Simply put, different languages tend to represent 
concepts and ideas that are often unique to the environment in which they exist. 
An often-used example comes from the Inuit language and its variants, which have 
many different words for ‘snow’ that describe variation within the phenomenon. Also, 
`Nguni languages have the same word for ‘green’ and ‘blue.’ 

However, research on what Carey (1985, 2009) has referred to as “core cognition” 
suggests that children from disparate language groups share certain innate 
fundamental predispositions that form the cognitive basis for developing concepts, 
or, to be more precise, new and more complex conceptual representations. A Whorfian 
(Whorf, 1956) stance does not explain this type of content architecture of cognition, 
but does have much to say for the signs by which cognition is communicated and 
which develop uniquely in speech communities. In formal education, if one uses De 
Saussurean parlance (De Saussure, 1986) the signs of language are as important as 
their signifieds (Nazzi & Gopnik, 2001). 

The larger topic of how language feeds into education, and vice versa, is not the 
focus of this article. We address the way specific test items are used to assess children, 
by arguing that the construct validity of these items rests on consensus of the meaning 
of test items, across the four languages we will refer to. We describe an example of 
the attempt to translate a latent trait encoded in one test from German into English 
and then into Sesotho and isiZulu. The MARKO-D, an instrument that assesses 
mathematical competence and which was developed in Germany (Ricken, Fritz & 
Balzer, 2012), is a test that scratches the surface of basic mathematical cognition. The 
test itself is, however, aimed at capturing learned representations.1

The test was translated into English (originally not the South African variant) and 
from there into isiZulu and Sesotho. Some of the formal isiZulu and Sesotho versions 

1 There are exceptions. Cultures, such as the Piraha and Munduruku in the Amazon, have not developed the 
ability to go beyond core cognition of number, due merely to a lack of need. These cultural systems do not rely 
on numerical representations that have developed beyond what evolution has endowed the human species 
with. In these languages only the first three numbers are named, while the 1-1 correspondence of objects and 
cardinal quantities has not been established for more than three objects. (Carey, 2009; p. 303) 
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of the test items were virtually incomprehensible to the grade 1 pupils it sought to 
assess empirically, since they were represented in the formal register of the two 
languages that the urban children do not use (Welch, Dampier and Mawila, 2011). As a 
result, the validity and reliability of the test and the data it sought to gather could have 
been compromised, since the representational mode in which the test was delivered 
appeared, on face value, not to suit the linguistic context in which it was administered. 

The purpose of this article is two-fold. Firstly, using the MARKO-D test, we evaluate 
the cross-linguistic assessment of mathematical representations built on core 
mathematical cognition. The developers of the test explain that it was designed for 
pre-school children (Gerlach, Fritz & Leutner, 2012) and was piloted and later validated 
with 3000 children in Germany. They explain that it was developed not to test core 
knowledge of mathematical concepts (which is believed to be innate), even though it 
taps into this, but that it was designed to measure mathematical concepts that have 
been learned socially, from the ability to count with the succession principle through 
to knowledge of natural number and cardinality. One of the basic assumptions of the 
test is that while all children are born with a set of core mathematical concepts, they 
develop basic mathematical skills as they learn, mostly through some instruction, be it 
formal or informal, which is mediated, mostly, by language as semiotic mediator. 

Secondly, we assess whether the double translation from German into English and 
then into isiZulu and Sesotho had any effect on the way in which individuals from the 
different language groups responded to the test. The Rasch model of measurement 
(Rasch, 1960; Andrich, 1988; Bond & Fox, 2007) was used to assess the effect of the 
double translation on the items of the test. The model indicates whether the MARKO-D 
is a reliable tool with which to measure mathematical competence in English, isiZulu 
and Sesotho in urban South African classrooms. It was used to determine whether our 
data violated the assumption of unidimensionality, which is a basic tenet of the Rasch 
model and item response theory, more generally (Wright, 1988; Wright & Stone, 1999, 
Anrdrich 1988; de la Torre & Patz, 2005; Andrich & Hagquist, 2012; Bond & Fox, 2007; 
Rasch, 1960; DeMars, 2010). 

This article presents a preliminary analysis of the suitability of the MARKO-D as a 
measure of mathematical competence in what is a very distinct setting, the urban 
South African ‘township’ classroom. The sample size of the pilot test on which we 
report	(n=106)	is	suitable	for	such	a	pilot	and	was	followed	in	2012	by	a	sample	of	280.	
De Mars explains that (2010, p. 34), “Rasch or one-parameter logistic (1PL) models are 
often used with samples as small as 100 or 200 examinees,” but prevailing wisdom 
holds that increasing the number of examinees will improve the estimation of person 
ability and item difficulty. With the limitations of this sample size, we make no claim 
to have arrived at a conclusive evaluation of the accuracy, validity and reliability of 
the MARKO-D for all urban South African schools that are similar to our sample school. 
Instead, this analysis of the test provides a preliminary assessment of the suitability 
of the test and the effect of translating the test from German to English and then into 
isiZulu and Sesotho.



SAJCE– December 2012

38

The Rasch model indicates (1) whether the MARKO-D assesses mathematical 
competence consistently in the three different language groups, in other words, it 
determines to what extent the test fits with the population assessed in this study, and 
(2) whether the act of translating the test into three different representational systems 
has had any effect on the dimensionality of the data. The principle of unidimensionality 
maintains that only the difficulty of test items and the ability of individuals should have 
any bearing on the data (Wright, 1998; Wright & Stone, 1999, Anrdrich 1988; Andrich & 
Hagquist, 2012; Bond & Fox, 2007, DeMars, 2010, de la Torre & Patz, 2005). Violation of 
this principle may suggest that extraneous variables are clouding the accuracy of the 
MARKO-D as a measure of mathematical competence. 

We begin with a brief discussion of what core mathematical cognition refers to, 
and, specifically, what Carey’s (2009) theoretical stance entails, before exploring her 
theory of learning, or cognitive development. As a leading cognitive developmental 
psychologist, her view is widely accepted (Carey, 2001; 2004 & 2009). This will be 
followed by a brief discussion of the origin and the validation of the MARKO-D test. 
Thereafter, we report on how we used the Rasch model to assess whether this 
instrument accesses mathematical competence consistently and accurately across 
the three language groups tested. We also discuss the effect that translating the 
assessment has had on the different language groups.

Core mathematical cognition 
Carey (2009, p. 3) explains that her work, The Origin of Concepts, offers an account 
of the “human capacity for conceptual representation.” On the surface her argument 
appears to be rather simple, since her basic premise is that (2009, p. 3), “(s) ome 
concepts, such as object and number, arise in some form over evolutionary time,” 
while other concepts “such as kayak, fraction, and gene, spring from human cultures, 
and the construction process must be understood in terms of both human individuals’ 
learning mechanisms and sociocultural processes.”

The distinction between what is inherent in our species (produced over the course 
of our evolution) and what cultures produce in the attempt to articulate what is 
particular to them, is maintained throughout the exploration of what she refers to as 
conceptual representation and conceptual development. Carey’s argument for core 
cognition has been consistent for over a decade.

Along with Spelke (Carey and Spelke, 1994, p. 169), she argues that, “human 
reasoning is guided by a collection of innate domain specific systems of knowledge” 
and that each system is defined by “a set of core principles that define the entities 
covered by the domain and support reasoning about those entities.” Learning, they 
argue, will entail the development and the entrenchment of these core principles 
(1994, p. 169). The domains of knowledge they are referring to include knowledge 
of language, knowledge of physical objects and knowledge of number (Chomsky, 
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1980; Carey & Spelke, 1994)2. Later, Carey & Spelke (1996, p. 517) argue that in the 
same way we “are endowed with multiple, specialized perceptual systems, so we 
are endowed with multiple systems for representing and reasoning about entities of 
different kinds,” which includes “at least four core conceptual systems encompassing 
knowledge of objects, agents, number, and space.”  

While Carey has since distanced herself from the “core knowledge” argument 
forwarded by herself in collaboration with Spelke, and by other cognitive 
developmentalists (Carey & Spelke, 1996; Spelke, 2000; Spelke, 2003; Gelman, 1991; 
and Leslie, 19943), her definition of “core cognition” retains conceptual and theoretical 
relations to it. She (2009, p. 10-11) maintains the stance that cognitive development 
is organized around a core set of conceptual representations that are “evolutionarily 
underwritten,” and that differ from sensory and perceptual representations “in 
having a rich, conceptual, inferential role to play in thought.” The major difference 
between core cognition and core knowledge is that core cognition, notably, does not 
claim to be veridical, which means that core cognition exists independently of contact 
with particular phenomena in the world. Core cognition is embedded within the 
brain, it exists as the fons et origo of knowledge, and does not require experience to 
actively serve its basic function, which is to make sense of sensory input. Even though 
knowledge may change over time, it appears that core cognition remains stable 
and  constant.4

By implication members of different language groups, for example the German, 
isiZulu, English and Sesotho groups, should all, at some point of maturation, have 
similar, if not the same, set of core mathematical concepts available to them 
before they embark on the process of creating new representational systems that 
will arise through sociocultural “semiotic mediation” (Vygotsky, 1978). Cognitive 
neuropsychologists have gone a long way to proving that all human beings, regardless 
of language and culture, and indeed many animals such as rats, the various primate 
species, many species of bird, and so on, are naturally endowed with the ability to 
analyse reality in terms of number and quantity (Carey, 2009; Dehaene, 2010; Deheane 
& Brannon, 2011; Feigenson, Dehaene & Spelke, 2004; Feigenson, Carey & Spelke, 2002; 
Le Corre & Carey, 2007). If core cognition is an evolutionary product, then every child, 
regardless of linguistic origin, should have the same basis from which to develop new 
and more sophisticated concepts, theories and systems of representation. 

2 Leslie (1994, p. 121) writes that: “The language faculty is probably not the only member of a class of core 
domains concerned with knowledge of formal systems. Formal core domains plausibly include number and 
music, as well as grammar.”

3 Leslie (1994) prefers “core architecture.”

4 Carey & Spelke (1996, p. 519) argue that, “[c]ore systems, in contrast, are elaborated but not revised: neither 
infants, nor children, nor adults engaged in commonsense reasoning ever give up their initial systems of 
knowledge.” It is foundational in humans as it is foundational in other species.
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‘Bootstrapping’ and the representation of positive integers
“Bootstrapping is the process that underlies the creation of such new concepts 
and thus it is part of the answer to the question: What is the origin of concepts?”

(Carey, 2004: p. 60)

In this section of the article we explore the debate around the continuity of core 
number cognition and its role in learning. There are two trends in the literature, 
seeking to explain the genesis of number and other mathematical concepts. 

Carey (2009, p. 12) explains that The Origin of Concepts is an “extended 
exploration of learning mechanisms,” and she characterizes “learning processes as 
those that build representations of the world on the basis of computations on input 
that is itself representational.” The world is understood through representational 
input, which can be observed or experienced, that will ultimately be encoded in a 
conceptual system. An elemental cistern of concepts serves as the foundation for 
learning and development. Carey explains (2009, p. 13) that, the “proposals for the 
initial stock of representational primitives and for the types of learning mechanisms 
that underlie cognitive development are logically independent, although there are 
inductive relations between them.” This posits that learning is the reconciliation of 
new information and pre-existing (innate) cognition, which is conducted by inherent 
learning mechanisms and the representational systems (such as language) in which 
they are communicated. Language as semiotic mediator is plainly crucial. 

The development of a mathematical representational system is an example of this. 
While individuals share a core set of mathematical concepts that are the product of 
human evolution, each individual will create a unique mathematical representational 
system as he/she is exposed to further cultural constructions of mathematics. 
Carey writes (2009, p. 18) that the “integer list is a cultural construction with more 
representational power than any of the core representational systems on which it is 
built.” This means that integers, as products of conceptual development and cultural 
construction, are built from more basic forms of mathematical cognition. Similarly, 
the development of rational numbers “transcends the representations available 
at the outset of [this particular] construction process,” which, according to Carey 
(2009, p 19), includes the “representation of integers created by children during their 
preschool  years.”

Children with different linguistic and cultural origins will develop in line with the 
proclivities and limitations of the system within which they develop. Since some 
learning, be it formal or informal would have occurred before the children tested 
in this study entered school, language (as a system of signs that signify concepts) 
would have played a major role in their development. The ability of these children to 
represent positive integers and to understand cardinality is defined by the language 
they speak and the culture they come from. Here core cognition is not the handmaiden 
of learning – now language and environment kick in. 

Carey argues that while analog magnitude representations of number, the parallel 
individuation system and natural language quantifiers, are all products of human 
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evolution (the last being a product of language evolution in particular), and qualify 
as examples of “core cognition,” the ability to represent natural numbers, or positive 
integers, is the product of socio-cultural mediation.5 The human ability to represent 
positive integers is learned. It is a product of culture, not nature. She explains this, 
with the notion of conceptual systems (CS) that change from one system to another 
(2009, p. 292):

We can examine the core cognition systems with numerical content and specify 
the ways in which integer representations transcend them. The most important 
task to one attempting to establish conceptual discontinuity is to characterize 
CS1 and CS2, demonstrating in what sense CS2 contains representations not 
expressible in CS1.

Since the representations of natural numbers are learned, they form part of a 
conceptual system, in this case CS2, that is conceptually discontinuous with core 
cognition system that 1) analog magnitude representations of number, 2) the 
parallel individuation system and 3) natural language quantifies are part of, which is 
represented here as CS1 (see figure 1). 

Conceptual System 1
•	 Analog Magnitude

•	 Parallel individuation

•	 Natural language 

•	 quantifiers

Conceptual System 2
•	 Cardinality principle

•	 Integers

•	 Natural numbers

 
Figure 1: The conceptual representation of integers. 

Since the publication of Gelman & Gallistel’s The Child’s Understanding of Number (1978) 
cognitive psychologists have forwarded conflicting theories of how children learn to 
“determine the cardinality of a collection” (Rips, Bloomfield, & Asmuth, 2008, p. 626; 
see also Le Corre & Carey, 2007 and Le Corre, Van de Walle, Brannon, & Carey, 2006). 
Many cognitive psychologists have argued that two innate conceptual systems of 
number form the basis for determining cardinality when children are roughly between 
4 and 5 years old (Dehaene, 1997; Feignson, Dehaene, & Spelke, 2004; Starkey, Spelke 
& Gelman, 1990; Holloway & Ansari, 2009; and by Carey herself in various works). 
There is evidence that children as young as six months of age are capable of producing 
analog magnitude representations of number and parallel individuations of small sets. 
These two innate systems of numerical representation, as well as the quantifiers of 

5 Elsewhere she argues (2004, p. 60): “Before they acquire language, infants form several different types of 
representation with numerical content, at least two of which they share with other vertebrate  animals.”
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natural language, have been cited by many, Gelman & Gallistel (1978) most notably, as 
forming the basis for children’s ability to represent positive integers. 

However, Carey and other authors (2004; 2009; Le Corre & Carey, 2007; Le Corre 
et al, 2006) present sceptical views of the plausibility of the argument that these 
three innate systems of number are capable of representing positive integers and 
allowing children to arrive at an understanding of cardinality. Le Corre & Carey (2007) 
explain that, firstly, the analog magnitude system is not capable of presenting the 
exact quantities of number that the representation of positive integers requires. The 
analogue magnitude system cannot represent numbers as discrete quantities, because 
it serves only to estimate quantity and to distinguish between magnitudes of differing 
size.6 The analogue magnitude system “encodes number as would a number line,” and 
it is present in human beings as early as “the sixth month of life” (ibid, 2007, p. 397). 
Le Corre & Carey conclude that the analogue magnitude system is too limited to serve 
as a plausible basis for developing the ability to represent positive integers (2007, pp. 
433-434). It is not capable of dealing with the precise values of number required by the 
representation of positive integers.

Secondly, these authors also argue that (ibid, pp. 297-298) the parallel individuation 
system is capable of representing “sets of individuals by creating working memory 
models in which each individual in a set is represented by a unique mental symbol.” 
They are quick to caution, however, that this “system has a hard capacity limit” (ibid, 
p. 298). They explain:

In adults, it cannot hold any more than 4 individuals in parallel. Many experiments 
suggest that the infant system cannot hold any more than 3 individuals in 
parallel, though one group of researchers has found that it too can hold up to 
4. Importantly, unlike the analog magnitude system, this system contains no 
symbols for number. However, it is clear that it has numerical content. Criteria 
for numerical identity (sameness in the sense of same one) determine whether a 
new symbol is created in a given model. Additionally, infants can create working 
memory models of at least two sets of 3 or fewer individuals, and can compare 
these models on the basis of 1–1 correspondence to determine numerical 
equivalence or numerical order.

Thirdly, they argue, the quantifiers of natural language are similarly limited in their 
capacity to represent discrete numerical quantities. Le Corre & Carey (2007, p. 
298)  explain:

A third system available to non-linguistic primates and to preverbal infants is 
what we will call the “set based quantificational system.” This system is the 
root of the meanings of all natural language quantifiers. To provide the basis for 
quantification, this system explicitly distinguishes the atoms, or individuals, in a 
domain of discourse from all the sets that can be comprised of them. 

6 Le Corre & Carey (2007, p. 397) write that the analogue magnitude “is characterized by two related 
psychophysical signatures –Weber’s law and scalar variability. Weber’s law states that discriminability of 
two quantities is a function of their ratio (e.g. 5 and 10 are easier to discriminate than 45 and 50). Scalar 
variability holds if the standard deviation of the estimate of some quantity is a linear function of its absolute 
value. Analogue magnitude serves to estimate various quantifiable areas of experience (2004, p. 60): “Mental 
analog magnitudes represent many dimensions of experience - for example, brightness, loudness, and temporal 
duration. In each case at the physical magnitudes get bigger, it becomes increasingly harder to discriminate 
between pairs of values that are separated by the same absolute difference.”



Dampier & Mawila – Test items and translation

43

The representation of natural numbers, via numeral (counting) lists, depends on the 
ability to 1) count in sequence and 2) the accompanying ability to associate these 
representations with discrete quantities that follow successively, which equates to 
n + 1 for any number in the count sequence. These abilities are both not innate but 
learnt. This requires the formation of a direct relation between, for instance, the 
representation “five” and the quantity of five, represented here as five lines “- - - - - ”. 
The ability to do this, according to Carey (2009, p. 295), far exceeds the limitations of 
analog magnitude representations of number, which she explains are not “powerful 
enough to represent the natural numbers and their key property of discrete infinity.” 
What is more, analog magnitude representations embedded within CS1 “provide 
merely approximate representations of the numbers in their domain, even one, 
whereas numeral list systems [which are part of the CS2] represent each natural 
number exactly.”

She finds (2009, p. 295) that while systems of parallel individuation may contain 
“machinery for indexing and tracking sets of individuals,” it does not contain 
“symbols for cardinal values.” Indicating that the ability to represent natural number 
exceeds the conceptual limit of parallel individuation systems. In addition, “natural 
language includes no representations of exact cardinal values above three” (Carey, 
2009,  p.  296).

At this stage the question is: “How do children learn to represent positive integers, 
that is, are there stages in the process of gaining knowledge of cardinality?”

Carey’s model of learning rests on a characterisation of learning via a process she 
calls “bootstrapping” – a metaphor with a specific history, which we will not explore 
in this article. While there is not enough space to explore this model of learning in 
the detail it merits, it is expedient to provide a brief explanation for this specific 
use of term.7 Since Carey’s model of conceptual change requires that conceptual 
discontinuities exist when new representational systems are developed, the metaphor 
of bootstrapping maintains that learning entails “building a structure while it is not 
[already] grounded” (2009, p. 306). Initially, when new representational systems 
are developed, the learner only learns “the relations of a system of symbols to one 
another,” and does not associate these symbols with pre-existing concepts (2009, p. 
306). This process of association is described as mapping each sign onto a concept 
or a component of a concept. Before this mapping takes place, signs serve only as 
placeholders, that is, they are spectres of the concepts they will at some point serve 
to represent in a direct and semantically constrained relation. Once the signs and 
concepts of a new representational system correspond to one another, the learner 
has successfully learned how to associate a new system of signs with the concepts 
they serve to represent. A new conceptual system has hereby been developed. Once 
learners have grasped the notion of ‘decades’ and ‘decupling’, they cannot go back to 
a conceptual system (CS1) in which this understanding (CS2) does not feature.

7 For evaluations of “bootstrapping” as a model of learning see Rips, Asmuth & Bloomfield (2008; 2006); Gelman 
& Butterworth (2005); and Butterworth (2005) - for criticism of the approach, and Carey (2004 and 2009), 
Henning (2012) and Henning & Dampier (2012) - for a description of the process. 
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We can explain the notion of place holding further. In learning how to represent 
integers or natural numbers, children at first learn the signs of representation before 
they come to understand the cardinality of number. And, it appears, that process of 
learning occurs in stages (2009, p. 301):

Besides confirming that CS1 and CS2 are stable representational systems, these 
data constrain [sic - contain] an account of the learning process. After having 
memorized the count list and the count routine [which constitute the signs 
of the new representational system], first the child is a no numeral knower, 
although by 24 months of age, many English learning children are already “one”-
knowers. Being a “one”-knower is a consistent stage children remain in for six to 
nine months. Then they become “two”-knowers, and some also become “four”-
knowers before figuring out how the numeral list represents natural number. 
Children stay subset-knowers for 1 to 1.5 years. When they become cardinal 
principle knowers, they have created a representation of some positive integers, 
a numerical representation [sic] that transcends core number representations.  

The bootstrapping process, through which the representation of positive integers is 
learned, requires, at first, that the learner learn the system of signs with which natural 
numbers will be represented. At first these signs are spectres, since they are devoid of 
any conceptual content and exist without stable signifieds. This changes once a direct 
relationship between the sign and the concept is established; at this point the signs are 
no longer placeholders or spectres for concepts they are meant to represent. In a sense, 
at this point the concepts or signifieds come-to-life within the sign, much as Vygotsky 
also theorized learning form and through words (Vygotsky, 1992; Henning, 2012). 

In learning how to represent positive integers, children will go through various 
stages. They will begin to learn the various signifiers of the numeral list, before they 
understand that each sign represents a particular quantity (this encompasses the shift 
from “no”-knower, to “one”-knower, “two”-knower, “three”-knower, and eventually 
to “four”-knower, see figure 2). During the subset-knower phase, learners “know the 
numerical meaning of only a subset of numerals on their count list” (2009, p. 298), 
but do not know that, “the last word reached in a count [of a subset of the count list] 
represents the cardinal value of the set” (2009, p. 298). Cardinal knowers are said to 
understand “the numerical meaning of the activity of counting and can now reliably 
produce sets with the cardinal value of any numeral on their count list” (2009, p. 298).
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Conceptual System 1

•	 Analog Magnitude

•	 Parallel individuation

•	 Natural language 
quantifiers

Conceptual System 2

•	 Cardinality principle

•	 Integers

•	 Natural numbers

“one”-knower
“two”-knower
“three”-knower
“four”-knower

Sub-set knowers

Cardinal principle knowers

Figure 2: From “one”- knower to Cardinal principle knower .      

The MARKO-D test 
We conducted this pilot study at the beginning of a longitudinal panel research 
programme in which we follow the participants over four years in various areas of 
childhood development, one of which is mathematical competence. The MARKO-D 
was specifically designed to capture development of individual children and to 
show the way in which children develop mathematical competence. This process of 
development is captured in five levels that increase with complexity and difficulty. Our 
thesis is that every more advanced level of development is a representational system 
that is conceptually incommensurate with a level that has gone before. This means 
that more basic levels in this measure of mathematical competence cannot represent 
the concepts of more advanced levels, since each concept and level builds on what has 
come before. Ricken, Fritz-Stratmann and Balzer (2011, p. 256), the designers of the 
test, describe the instrument as follows (translated from German):

Process-oriented diagnostics require a theoretical framework which allows for the 
description and interpretation of individual competence changes. For the MARKO-D 
test, a corresponding dimension/scale of mathematical achievement was developed 
on the basis of theoretical suppositions and empirical data. Five concepts [which are 
representational, conceptual systems in Carey’s parlance] are tested, namely numbers 
as counting sequence, the ordinal number line, cardinal understanding, part–part–
whole, and the concept of congruent intervals. There is empirical evidence for the 
validity of the model, using a unidimensional Rasch model. The test, on the one hand, 
allows for comparison of individual data with a social norm and, on the other hand, is 
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usable to make valid statements about individual changes and development as well as 
the current competence status of a child.

The MARKO-D measures children’s early mathematical and arithmetical 
representations. While the test does not claim to access core mathematical cognition 
directly, it does open up empirical windows to basic conceptual representations of 
number, quantity, order and relationality. The test was empirically scaled, using Rasch 
modelling. Items that could be solved with the same conceptual knowledge were 
grouped together in levels that the authors refer to above. These levels of competence 
(broadly sequential in development) include:

1. Numerals – counting words

2. Ordinal number line

3. Cardinal numbers and partitioning

4. Conservation and class inclusion

5. Relationality 

The test was standardized with data of 3000 children (4-8 years) from different 
contexts in Germany and it was normed with data form 1029 children (48 – 87 months), 
with	567	boys	and	528	girls	(M	=	64.6	months;	SD	=	7.2)	(Ricken	et	al:	2011,	p.261).

To borrow from Carey, every level of competence represents a representational 
system that is more expressive and more complex than the level that has gone before. 
Every level hereby “transcends in some qualitative way” the representational system 
that has gone before (Carey, 2004: p 59). Each level also represents a limit that must 
be transcended if new and more powerful representational systems are to develop.

Administering the test in an urban South African setting
The basic premise of the Rasch model of measurement is that the ability of persons 
tested is independent of the difficulty of items used to measure a latent trait (Wainer, 
Morgan & Gustafsson, 1980; Linacre, 2002). The model is used to estimate the 
probability	that	a	person	with	an	ability	of	βx will	get	an	item	with	the	difficulty	of	δx 

correct. Like other IRT models it assumes that a single construct or latent trait is being 
measured (Wainer et al, 1980; Wright, 1998; Wright & Stone, 1999; Andrich, 1988; 
Andrich, Marias &Humphrey, 2011; Bond & Fox, 2007, Linacre, 2002). For this reason, 
it makes the assumption that all items measure the same trait (Wainer et al, 1980) and 
that individual persons are responding to items in a way that is consistent with other 
people (Wright & Stone, 1999)8. The principle of unidimensionality maintains that no 
other dimension or extraneous variable should have any bearing on what is tested 
by the items, or on the way in which persons respond to items, that is, this principle 

8 Wright & Stone (1999, p. 48) explain: “The Rasch model is derived from the requirement that person measures 
and item calibrations be separately estimable. This requires that (1) a more able person always have a greater 
probability of success on any item than a less able person, and (2) any person always be more likely to do better 
on an easier item than on a harder one.” 
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requires that only one construct is measured in persons and by items. Bond & Fox 
(2007, p. 32) explain that the “focus on one attribute or dimension at a time is referred 
to as unidimensionality.”

Unidimensionality is a general concern of item response theory (DeMars, 
2010). Cook, Dorans & Eignor (1988, p. 19) argue that a basic assumption of the 
“most commonly used item response theory (IRT) models is that the data are 
unidimensional, that is, statistical dependence among item scores can be explained by 
a single dimension.” Even when IRT models are used to measure multiple dimensions, 
“a common practice in educational measurement is to estimate these abilities 
independently of each other” (de la Torre & Patz, 2005, p. 295). The delimitations 
of the Rasch model require that data reflect the measurement of one latent trait 
according to the ability of individual persons, and the difficulty of items, on the trait 
(DeMars, 2010). This means that data must fit with the assumptions and expectations 
of the model (Linacre, 2002).

It is assumed that all items measure the same construct or latent trait. A corollary 
of this is that all persons are expected to respond to the items in a way that is 
consistent with their ability on the trait and in relation to the ability of other persons. 
When these two requirements are satisfied the data are likely to fit the parameters of 
the model (Wright, 1998, Bond & Fox, 2007). Or as Andrich (1988, p. 61) writes “if there 
is discord between the data and the model, it is left open to question whether the 
model or the data are at fault. It is conceivable that when the data do not accord with 
the model with which they are intended to accord, that something has gone astray 
with the data or its collection.” In determining the fit of the data with the model, we 
are essentially trying to determine whether the data accord with the delimitations of 
the model. Write & Stone explain (1999, p. 47):

A complete analysis must include an evaluation of how well the data fit this 
essential specification. If a person answers the hard items on a test correctly but 
misses several easy items, we are surprised by the resulting implausible pattern 
of incorrect responses. While we could examine individual records item-by-item 
to determine this kind of invalidity, in practice we want to put such evaluations 
on a systematic and manageable basis. We want to be specific but also objective 
in our reaction to implausible and hence invalid observations.

Does it Fit?
According to Wright & Stone (1999, p. 48), “(f)it analysis shows us the extent to 
which any data can be used to construct measures. Each data analysis must include an 
evaluation of how well those particular data fit the expectations which measurement 
requires.” One way of determine the fit of the data to the parameters of the model is 
to examine the fit statistics of the data. Bond & Fox (2007, 310) define fit statistics as 
“indices that estimate the extent to which responses show adherence to the modelled 
expectations.” There are two measures of fit; infit and outfit. Infit statistics indicate 
the extent to which persons or items fit with the Rasch model, that is, they indicate 
“the degree of fit of observations to the Rasch-modelled expectations” (Bond & Fox, 
2007, p. 310), while outfit statistics “are influenced by off-target observations,” and 
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indicate the extent to which extreme cases and/or unexpected responses are affecting 
the data (Wright & Stone, 1999, p. 53).

This table summarizes the infit and outfit statistics for the items used to measure 
the latent trait.

Table 1: Summary of 54 measured items

TO
TA

L 
SC

O
RE

CO
U

N
T

M
EA

SU
RE

M
O

D
EL

 E
RR

O
R

INFIT OUTFIT

MNSQ ZSTD MNSQ ZSTD

MEAN 62.1 105.9 .00 .29 .99 -.1 1.04 .1
S.D. 30.4 .3 1.85 .13 .09 .8 .42 1.1
MAX. 30.4 106.0 3.91 1.01 1.24 1.9 3.22 3.5
MIN. 5.0 105.0 -4.56 .21 .81 -2.4 .18 -2.2
REAL 
RMSE

.32 TRUE SD 1.82
SEPARA-
TION

5.66 ITEM
RELIABIL-
ITY

.97

MODEL 
RMSE

.32 TRUE SD 1.82
SEPARA-
TION

5.74 ITEM
RELIABIL-
ITY

.97

S.E.	OF	ITEM	MEAN	=	.25
MINIMUM EXTREME SCORE:      1 ITEM

Table 3 indicates the extent to which items measured the ability of individuals in the 
data set. Three items, 34, 35 and 30 exhibited statistically significant misfit (ZSTD < 
2.00). These items also had large outfit mean square values (> 1.50) which means 
that their suitability for measurement needs to be assessed.9 This table suggests 
that these items elicited responses from persons that were affected by something 
other than mathematical competence. These items were not measuring the latent 
trait effectively. There is, to borrow from the discourse, some ‘noise’ in these items 
(Linacre, 2002).

These items measure the degree of competence in ordering numbers on an ordinal 
number line. In each respective language the rater would ask, what translates into 
English as, “What number is one bigger than 7?” (30), “What number is two smaller 
than 5?” (34), and “What number is two bigger than 4?” (35). 

In our initial review of the English translations of the original German test, 
we considered these items to be linguistically incongruent with the South 
African linguistic context. Even the English cohort that we tested struggled 
with the formulation of these items. The reasons for this may be multiple, but 
one possible explanation lies in the fact that our English cohort consisted of 
learners who speak an African language at home, and are schooled in English 
from Grade 0 through to Grade 12. They receive no instruction in an indigenous 
African language while at school. However, it appears that they retain certain 

9 Linacre (2002) explains that values greater than 1.0 suggest the presence of unmodeled noise or other source 
of variance in the data. This essentially degrades measurement. On the other hand, values less than 1.0 suggest 
that the model predicts the data too well. A value of .99 is desirable, since Linacre (2002) argues that MNSQ 
values between 0.5 and 1.5 are productive for measurement.
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linguistic representations of quantity, number and spatial orientation from their 
mother  tongue. 

By asking learners from all three linguistic groups in our sample to determine which 
“number is two bigger than 4,” we were essentially confusing the learners, some 
of whom interpreted this question as referring to size that can be measured, rather 
ironically, with a ruler. We effectively confused terminology, signs and concepts for 
them. Bear in mind that the test was administered orally in clinical interview mode. The 
children may have been baffled by the issue of whether the word “number,” in the 
formulation, refers to a digit (that can be signed), a quantity (that can be measured), 
or a concept (that we have of a number)? Does “two” refer to the digit, the numeral as 
a sign for measurement or the concept? And does “five” refer to the digit, the quantity 
or the concept?

Table 2: Item statistics: misfit order
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.

INFIT OUTFIT PT-MEASURE EXACT MATCH

MNSQ ZSTD MNSQ ZSTD CORR. EXP. OBS% EXP%

34 10 106 3.13 .34 1.14 .6 3.22 3.5 A-.06 .24 90.6 90.5
35 11 106 3.01 .33 1.05 .3 2.16 2.3 B .13 .25 89.6 89.6
30 25 106 1.93 .24 1.24 1.9 1.59 2.4 C .05 .34 73.6 77.6
31 22 106 2.11 .25 1.03 .3 1.42 1.6 D .24 .32 79.2 79.9
3 82 106 -.90 .25 1.11 .8 1.41 1.8 E .20 .36 79.2 79.1

32 20 105 2.20 .26 1.09 .6 1.40 1.5 F .17 .31 81.0 81.1
47 5 106 3.91 .47 1.08 .3 1.39 .8 G .05 .18 95.3 95.3
17 77 106 -.60 .24 1.16 1.4 1.34 1.8 H.20 .37 70.8 75.8
33 13 106 2.81 .31 1.10 .5 1.33 1.0 I .13 .27 87.7 87.7
7 79 106 -.72 .24 1.20 1.6 1.26 1.3 J.17 .37 71.7 77.1

28 84 106 -1.02 .26 1.02 .2 1.23 1.0 K .32 .35 79.2 80.6
2 78 106 -.66 .24 1.02 .2 1.20 1.1 L .31 .37 77.4 76.4

10 82 106 -.90 .25 1.08 .7 1.17 .8 M .26 .36 79.2 79.1
6 79 106 -.72 .24 1.14 1.1 1.17 .9 N.24 .37 71.7 77.1

MEAN 62.9 105.9 -.11 .32 .99 -.1 1.04 .1 81.1 80.3
S.D. 30.7 .3 1.99 .24 .09 .8  .42 1.1 8.1 8.6

The misfitting nature of items 34, 35 and 30, respectively, suggests that these 
items, or rather the translations of the original German formulation into English, 
Sesotho and isiZulu, are having a negative effect on the ability of these items to 
measure a person’s ability to place numbers on the ordinal number line, which is a 
component of mathematical competence.    

Table 4 indicates the extent to which persons measured responded consistently 
with items used to determine their mathematical competence. It shows that six 
respondents out of 106 who were tested provided responses to items that were 
not anticipated or predicted. In most cases respondents with low mathematical 
competence answered difficult items correctly when the Rasch model expected them 
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to answer incorrectly. Since the MARKO-D only requires correct or incorrect answers, 
it is reasonable to assume that these respondents guessed correctly, or provided 
incorrect responses to comparatively easy items.

Table 3: Person statistics: misfit order

EN
TR

Y 
N

U
M

BE
R

TO
TA

L 
SC

O
RE

TO
TA

L 
CO

U
N

T

M
EA

SU
RE

M
O

D
EL

 S
.E

.

INFIT OUTFIT PT-MEASURE EXACT MATCH

MNSQ ZSTD MNSQ ZSTD CORR. EXP. OBS% EXP%

42 13 55 -1.93 .39 1.26 1.2 6.14 3.7 A .35 .53 77.8 83.1

89 29 55 .04 .35 1.49 2.6 3.20 4.0 B .34 .60 68.5 77.6

73 33 55 .53 .36 1.65 2.9 2.69 3.1 C .32 .60 72.2 80.1

84 30 55 .16 .35 1.46 2.4 2.66 3.2 D .38 .60 66.7 78.2

106 33 55 .53 .36 1.52 2.4 2.50 2.8 E .38 .60 68.5 80.1

50 21 55 -.89 .34 1.31 2.1 2.46 2.5 F .41 .57 63.0 74.7

36 25 55 -.43 .34 1.16 1.1 1.81 1.8 G .50 .59 68.5 75.6

MEAN 32.6 55.0 .54 .37 .99 -.1 1.04 .1 81.1 80.3

S.D. 7.2 .2 .94 .02 .24 1.2 .71 1.1 6.6 3.0

Andrich, Marais & Humphrey (2012, p. 417) consider “random guessing to be the 
function of the difficulty of an item relative to the proficiency of a person,” and not 
“a property of the item per se” (418). When a person with a relatively low manifest 
ability on the latent trait gets a difficult answer right, it is reasonable to assume that 
the person guessed correctly, unless the person suddenly develops an increased ability 
on the trait being tested. While other explanations abound, the unexpected response 
recorded when a person with a low ability endorses a difficult answer suggests that 
something has gone wrong in the measurement of the latent trait. 

Table 4 shows that the responses of six persons out of the 106 tested did not fit 
with the model’s expectations of how they should have fared. A closer look at their 
recorded responses suggests that five of the six persons got an item, or a number 
of items, right that they should have got wrong, while one person “106” got 
comparatively easy items wrong. A lack of concentration could have affected the 
answers given by this person. 

The question we are faced with is: “now that we know which items and persons 
are misfitting, what is to be done with them?” The most tempting solution would 
be to remove faulty items and aberrant responses from our data to get a better fit, 
but the problem with this is that, in the process, useful information about our items 
and the persons measured is ignored. It would be more useful to use the information 
gained from the misfitting items to produce better formulations of the items to better 
measure the latent trait. However, when it comes to dealing with person fit it would 
be a good idea to conduct an analysis of item invariance across the three different 
cohorts to determine whether responses to the items were influenced by something 
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other than item difficulty and person ability. A differential item functioning (DIF) 
analysis and an analysis of invariance were conducted to determine whether there 
were significant differences to report. 

The differential item functioning analysis shows that the differences between the 
groups, which appear to be slight, may indicate that the way in which particular items 
were translated, scored or communicated to the learners tested could have affected 
responses to a limited set of specific items. This might suggest that something other 
than item difficulty and person ability was having an effect on the way in which learners 
responded to particular items. However, an analysis item polarity did not indicate a 
definite difference between the three groups for the test as a whole, suggesting that 
the principle of unidimensionality was not violated. 

Generally, it appears that the groups had similar responses to the items in the test. 
With significant differences occurring at items, 11, 42, 43 and 45. These differences 
ultimately called for an analysis of invariance across the three groups. The analysis 
indicated that there is little difference between the Sesotho and isiZulu cohorts, but 
that there might be a case for arguing there is variance between the English and 
Sesotho and the English and isiZulu responses to the items of the test.
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Figure 3: Comparing the performance of individuals in the three language groups 
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Figure 4: English-Sesotho comparison

Figure 3 indicates the extent to which the English and Sesotho cohorts varied in their 
responses to the items used to measure the latent trait.    

This scatter plot indicates that a notable portion of items (10 of 55) fall outside of the 
95	%	confidence	interval,	which	indicates	that	these	two	language	groups	differed	in	
the way they responded to these particular items. Ideally all of the items should fall 
within the confidence intervals to negate the possibility of unmodelled noise affecting 
person responses to the items. When contrasted with the isiZulu-Sesotho comparison 
(Figure 3) it is clear that there is more variation in the English-Sesotho comparison than 
in the former (8 fall outside of the confidence intervals, which still suggests that an 
extraneous variable is affecting responses to these items, however slight it may be). 
The same can be said for the English-isiZulu comparison (where as many as 14 items 
fall outside of the confidence intervals). Notably, when we first assessed the isiZulu 
translation we considered it to be the most cumbersome and problematic (Welch et 
al, 2010).  
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Figure 5: isiZulu-Sesotho comparison 

Conclusion
More data are required to make a conclusive assessment of whether or not there 
are significant differences between the three linguistic groups and whether an 
added dimension is likely to affect the accuracy of the MARKO-D’s ability to measure 
mathematical competence in this South African setting. However, it was shown that 
the double translation did have an influence on how particular items were understood 
by the learners, which affected access to the construct these items were designed 
to  assess. 

While it may not be empirically or scientifically sound to make a hard and fast 
generalization at this point, it does appear that the MARKO-D measures basic 
mathematical competence across various language groups, and that language 
does not interfere to a significant extent with its ability to capture mathematical 
competence in learners from three different language groups, for which the test 
was not initially designed. Even though the linguistic formulation of certain items 
can be strengthened and rendered more linguistically-culturally sensitive, as it has 
been in subsequent testing of the first and second cohorts, the test goes a long way 
to measuring mathematical competence in Sesotho, isiZulu and English learners in a 
shared urban South African setting. 

The MARKO-D was designed with language, and the role it plays in conceptual 
development, in mind. The levels embedded within this instrument are a synthesis 
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of theories that try to account for the development of mathematical competence. 
Language plays a big part in this process of development, since the cultural 
construction of mathematical representations, as in the case of integers, rests and 
relies on language as a semiotic mediator. 

The pupils tested in this study are schooled either in their home language 
or in what is set to become the language of teaching and learning, i.e. English, yet 
performance across the cohorts in this test is consistent. In contrast with conventional 
wisdom, this suggests that the medium of instruction does not play a significant part 
in the development of early mathematical representations. Why then do we persist 
with implementing a language policy that suspends our children in a state of linguistic 
liminality, “betwixt and between” political ideals and global imperatives (Henning & 
Dampier, 2012; Dampier, 2012)?
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