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Abstract
Recent studies showed that kindergarten children solve addition, subtraction, doubling 
and halving problems using the core system for the approximate representation of 
numerical magnitude. In Study 1, 34 first-grade students in their first week of schooling 
solved approximate arithmetic problems in a number range up to 100 regarding all four 
basic operations. Children solved these problems significantly above chance.

In Study 2, 66 first graders were tested for their approximate arithmetic achievement, 
working memory capacity, groupitizing, phonological awareness, naming speed and early 
arithmetic concepts at the beginning of first grade and again at the beginning of second 
grade. It appears that approximate arithmetic achievement is independent from most 
other cognitive variables and correlates most with other variables of the mathematical 
domain. Furthermore, regression analyses revealed that school success was only 
predicted by groupitizing and central executive capacity, but not approximate arithmetic 
achievement, when controlling for other cognitive variables.
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Theoretical background
Helping students understand formal arithmetic is one of the main concerns of schools 
worldwide. However, international studies, such as the PISA and TIMS, revealed 
that students in several countries, including Germany, performed rather badly in the 
domain of mathematics. While the German public and media were embarrassed by 
these results, politics reacted quickly with several reforms. ‘PISA shock’ still became a 
dictum in German language. These findings from secondary school can be generalised 
to primary school. The latest TIMS study showed that one third of all fourth graders 
did not reach the intermediate benchmark they were expected to reach with proper 
formal schooling (Gonzales et al., 2008). This leads us to the question: how primary 
schooling can affect a better learning of formal arithmetic? These basic skills are 
needed for later school and vocational careers.

On the other hand, latest research showed that kindergarten children have 
remarkable arithmetical competencies prior to formal schooling. They solve certain 
approximate arithmetic problems in a number range up to 100 (Barth et al., 2006; 
Barth, Baron, Spelke & Carey, 2009; Gilmore, McCarthy & Spelke, 2007, 2010; McCrink 
& Spelke, 2010), although these problems include the same basic arithmetic operations 
they cannot use to calculate exact results at the end of primary school. This ability has 
been described in the theory of numerical core systems (Feigenson, Dehaene & Spelke, 
2004; Xu, 2003), which is based on the idea of an innate number sense (Dehaene, 1997). 
Gilmore et al. (2010) showed that early approximate addition performance predicts 
later precise arithmetic achievement in school. In contrast with this finding, other 
studies showed that working memory (Baddeley, 1986) is an important predictor of 
precise arithmetic achievement in kindergarten and early primary school (Bull, Espy & 
Wiebe, 2008; Krajewski & Schneider, 2009).

We wanted to combine both lines of research to investigate how working memory 
capacity and approximate arithmetic achievement predict later school success in the 
mathematical domain, and to discuss how these findings could help to affect young 
children’s understanding of formal arithmetic in school.

Core systems of number and arithmetic

Feigenson et al. (2004) refer to two innate core systems based on the number sense 
theory of Dehaene (1997). Core system 1 allows the approximate representation of 
numerical magnitudes, while core system 2 is used for the precise representation of 
distinct individuals.

Core system 1 is used to solve comparison problems with two given sets. The 
distinction is rather imprecise and is based on the ratio of the magnitudes of the 
two sets: while a person might be able to distinguish two sets of 40 and 80 objects 
(ratio 4:8), there may be problems when doing the same for two sets of 70 vs. 80 
objects (ratio 7:8). This just-noticeable-difference in ratio follows the Weber-Fechner 
law, which states that this difference is proportional to the magnitude of the stimuli. 
The core system is not static over the years, as the ratio that can be distinguished 
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increases with age. By means of habituation studies Xu and Spelke (2000) showed 
that six-month-old children are able to distinguish sets at a ratio of 1:2. Ten-month-old 
children can already distinguish sets at a 2:3 ratio (Xu & Arrigia, 2007), while adults can 
cope with ratios of up to 7:8, though performance still gets worse the closer the ratio 
approaches 1 (Barth, Kanwisher & Spelke, 2003).

Current research showed that during development children learn to use core 
system 1 based abilities not only to solve simple comparison problems, but to solve 
approximate problems of all four basic arithmetic operations as well. Barth, LaMont, 
Lipton and Spelke (2005; Barth et al., 2006) showed that preschool children solve 
addition problems in a number range up to 60 above chance when those problems 
were embedded in comparison tasks. This means children saw the addition of two 
given sets and compared this sum to another given set, to indicate which one was 
larger. Barth et al. (2009) showed that kindergarten children and first grade students 
solve non-symbolic doubling (multiplication) and halving (division) problems with 
given sets. McCrink and Spelke (2010) expanded these results and showed that 
children solve problems like ‘multiply by 2.5’ or ‘multiply by 4’. In all these studies the 
ratio of the two sets was crucial for solution probabilities, which indicates involvement 
of core system 1.

Core system 2 helps people to quickly keep track of small amounts. The exact 
number of objects that can be tracked by this system is a controversial issue. Antell 
and Keating (1983) showed that neonates up to an age of one week can distinguish 
sets of two and three items, but were unable to do so with bigger sets like four and 
six. Similarly, Feigenson, Carey and Hauser (2002) showed that ten- and twelve-month-
old children do this for sets up to three items, but not for any larger sets. Balakrishnan 
and Ashby (1992) reanalysed data from various studies and found no evidence for the 
claim that a subitizing limit exists for at least up to six items. They conclude that other 
findings claiming the finding of such a limit just measured limited attention. 

Carey (2009) on the other hand stated that the two core systems are not enough 
to explain how children learn to represent positive integers and understand cardinal 
concepts. These concepts need a precise distinction in an infinite number range, which 
is impossible with the limitation of the two innate core systems, as core system 1 is 
imprecise and core system 2 only has very limited range. Accordingly, another system 
of numerical representation must evolve during development, which connects 
sets with their respective number word and helps children to solve more complex 
arithmetic problems. Carey (2009) argues, that this system is culturally acquired, as it 
breaks the boundaries of the innate core systems. This kind of conceptual knowledge 
is used, e.g. in the concept of groupitizing (McCandliss et al., 2010). Groupitizing 
involves sets of smaller subsets (i.e. 3 sets of 3 items each, totalling 9 items), where 
the subsets can be subitised: children have to use addition and cardinal knowledge to 
determine the value of the entire set.

To sum up, it has been shown that children have some understanding of the four 
basic arithmetic operations prior to schooling. However, the more important question 
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for mathematical education is whether this understanding is helpful for the learning 
of formal arithmetic. Gilmore et al. (2010) showed that it predicts first grade school 
mathematics, even when controlling for age, verbal intelligence and reading literacy. 
On the other hand, Holloway and Ansari (2009) found no significant correlation 
between school arithmetic and reaction time on approximate comparison tasks. As the 
current findings are inconclusive, further research is needed to understand whether 
core system 1 influences school mathematics and how this works, especially when 
controlling for the culturally acquired numerical representation system as proposed 
by Carey (2009).

Predictors of arithmetic achievement in kindergarten and primary school

Reflecting upon the results of the studies discussed above, we asked ourselves 
whether approximate arithmetic abilities are an independent system, only relying on 
core system 1, which would mean that different approximate arithmetic operations 
only correlate with each other, or if it is influenced by the cultural numerical 
representation system or other variables, which are known for their influence on 
early school arithmetic. The first variable that came to our mind was the capacity of 
working memory (Baddeley, 1986), since high capacity usually contributes to better 
math achievement (see De Stefano & LeFevre, 2004, for a review). Working memory 
as described by Baddeley consists of three major components. The central executive 
is an attention control unit (Baddeley, 1996) and is involved in complex mathematical 
tasks that are not fully automatised yet (Meyer et al., 2009). Approximate arithmetic 
problems always involve two tasks (arithmetic operation and comparison). It is 
possible that the central executive is involved in these problems. However, as the 
problems put only little demand on the working memory system and are rather 
automatised – children are able to do the comparison part from infancy on – it seems 
more likely that the main load resides in the subsidiary storage units.

The phonological loop is the storage unit for auditory information and is involved 
in word problems (Andersson, 2007) and keeping track of accurate intermediary 
results (Andersson, 2008). Since there is not much auditory information involved 
in core system 1 problems used in current research, phonological loop influence 
seemed highly unlikely. The visuo-spatial sketchpad is the storage system for visual 
and spatial information and important especially for early arithmetic (De Smedt et al., 
2009a; Krajewski, Schneider & Nieding, 2008). As all problem relevant information is 
presented visually it seems reasonable that this subsystem would be involved.

As we also wanted to test whether approximate arithmetic abilities predict early 
school arithmetic, we had to keep in mind other variables influencing early school 
arithmetic. As stated above, literature indicated that a major contribution should be 
expected from working memory capacity. Other possible variables that predict early 
school arithmetic are rapid naming speed (Denckla & Rudel, 1974; Swanson & Kim, 
2007), phonological awareness (Wagner & Torgesen, 1987) and preschool arithmetic 
skills based on the model of early arithmetic concepts by Fritz, Ricken and Balzer 
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(2009). As approximate arithmetic and subitizing – as involved with groupitizing – are 
both based on the same innate number sense, we expected them to be correlated 
and wanted to find out which one is more important for early school arithmetic. Rapid 
naming speed is a measure of fast fact retrieval from long-term memory, which is very 
important for early school arithmetic, keeping in mind that children are asked to learn 
addition and multiplication tables, which is mainly fact retrieval. 

Phonological awareness is a predecessor of reading and writing skills, which 
correlates highly with school mathematics (and most other school subjects). Culturally 
acquired arithmetical ideas should be taken into account, to find out if school success is 
based on the core systems of number or on cultural arithmetic concepts acquired prior 
to schooling. One such concept could be groupitizing, as introduced by McCandliss 
et al. (2010); another one could be the model of early arithmetic concepts by Fritz & 
Ricken (2009).

Research questions

In sum, there are three major issues addressed in the presented studies. First, all four 
basic operations (addition, subtraction, multiplication, division) are implemented 
in one study to test whether there is an understanding of all four basic arithmetic 
operations, before they are trained in school. Second, it is still unclear how the 
development of approximate arithmetic abilities is correlated with other cognitive 
variables like working memory. Third, results on the predictive value of approximate 
arithmetic abilities for later school success are still ambiguous and it has to be validated 
whether these abilities remain influential when controlling for other known predictors 
of early mathematic achievement.

We conducted two studies to shed some light on these issues. We carried out 
a cross-sectional piloting Study 1 to investigate to what extent children at school 
entrance age can solve approximate arithmetic problems of all four basic arithmetic 
operations. In Study 2, we conducted a one-year longitudinal study to investigate 
two questions. In a first step we analysed how approximate arithmetic achievement 
is influenced by working memory capacity, groupitizing, naming speed, phonological 
awareness and early arithmetic concepts. In a second step we analysed which of these 
variables predict school success one year later. By means of these studies we wanted 
to test the following hypotheses:

1.	 Study 1: (a) Children at school entrance age can solve problems of all basic arithmetic 
operations approximately in a number range up to 100; (b) however addition and 
subtraction are easier than multiplication and division.

2.	 Study 2: Different approximate arithmetic variables (four basic arithmetic operations) 
are correlated with each other and furthermore with groupitizing, visuo-spatial 
sketchpad capacity and early arithmetic concepts, but not with naming speed, 
phonological loop or central executive capacity or phonological awareness.

3.	 Study 2: Approximate arithmetic achievement predicts school success one year later, 
even when controlling for other variables (working memory, core system 2, naming 
speed, phonological awareness, and early arithmetic concepts).
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Study 1
In Study 1 we investigated whether children at school entrance age can solve 
approximate arithmetic problems of all basic operations above chance. 

Method

Sample & Procedure. N = 34 first-grade students (17 boys, 17 girls) aged 70 to 90 months 
(M = 79.3, SD = 4.1) from a German primary school were tested within three weeks 
after their first day in school. Testing was conducted in individual settings for about 30-
40 minutes, respectively. All problems were presented on a laptop with a screen size 
of 10 inches and a resolution of 1024x600 pixels using Microsoft PowerPoint.

Material. We used approximate problems of all four basic arithmetic operations in a 
number range up to 100. Multiplication and division problems were preceded by two 
example problems to help children understand what they were expected to do.

Figure 1: Example problem for approximate addition.

Children received 24 addition, 21 subtraction, 16 multiplication problems (8 by 2 and 8 
by 3), and 16 division problems (8 by 2 and 8 by 3). On each trial the children saw an 
animated arithmetic episode with two cartoon characters having different amounts of 
dots and they had to decide which character had more (Figure 1).

During addition problems children saw two sets of blue dots falling behind an 
occluder on the left side, afterwards they were shown a set of red dots on the right 
side and had to decide which character had more dots. Addition problems were the 
same as those that Gilmore et al. (2010) used. For subtraction, a blue set of dots fell 
behind an occluder; afterwards some blue dots moved out of the occlusion and were 
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taken away. Now children were presented a red set for the other character and had to 
decide who had more.

During multiplication problems two (or three) cartoon characters were shown 
with a set of dots on the left side of the screen. However, children could only see one 
character’s blue set of dots, because the other sets were hidden behind an occluder 
from the very beginning, but they were told that the other character(s) had the same 
amount of dots behind this occluder. Afterwards the character to the right got a red 
set of dots and children had to compare who had more, the two (three) characters to 
the left or the one character to the right. 

During division problems there were also two (or three) characters on the left side 
of the screen. These characters had a set of blue dots, which they wanted to share 
equally. On the right side of the screen was a single character with a set of red dots. 
Children were asked (example for two characters to the left): ‘If this one [pointing to 
the leftmost character] leaves the scene and takes his dots with him, who has more: 
This one [pointing on remaining character on the left side] or that one [pointing on the 
character to the right]?’

All approximate arithmetic problems can be found in Appendix A.1. Across trials 
the dot arrays differed by ratio (4:5, 4:6, 4:7). Children had to indicate the correct 
solution by pointing on a character to the left or to the right. Within each problem 
category for 50% of the problems the correct response was left and vice versa, the 
sequence of correct left/right responses following a random order. We also tested 
for several alternative, non-arithmetic strategies in Appendix A.1 similarly to Gilmore 
et al. (2010).

Results and discussion

We obtained achievement scores for each participant for approximate arithmetic 
problems by computing relative frequencies of correct solutions within problem 
categories. Average achievement for all problem categories is presented in Table 1. 
T-tests were conducted to test whether means differed significantly from guessing 
probability (50%). Children solved all problems above chance and without relying on 
non-arithmetic strategies (see Appendix A.1), with some exceptions for subtraction 
problems. As children solved all problems above chance, our data are in line with 
Hypothesis 1a.

Table 1:	 Achievement (relative frequencies of correct solutions) within approximate 
problem categories in Study 1: Means, Standard Deviations, t Values and 
Significances (One-sample t-Test against M = .500, df = 33).

Task M SD t p
Addition .714 .108 11.595 < .001
Subtraction .610 .100 8.199 < .001
Multiplication .686 .141 7.700 < .001
         by 2 .721 .160 8.035 < .001
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Task M SD t p
         by 3 .651 .156 5.625 < .001
Division .704 .140 8.523 < .001
         by 2 .695 .177 6.409 < .001
         by 3 .713 .183 6.779 < .001

Study 1 was conducted as a pilot study to find out which approximate arithmetic 
operation might possibly have predictive value for later mathematical school success. 
We decided to omit subtraction problems from Study 2 with regard to lowest solution 
probabilities and non-arithmetic strategy analyses (Appendix A.1)

Study 2
Study 2 was conducted to research how approximate arithmetic achievement is 
correlated with cognitive variables and whether it has predictive value for later 
school mathematics achievement when controlling for other known determinants of 
individual differences in mathematics achievement.

Method

Sample & Procedure. N = 71 first-graders (38 boys, 33 girls) aged 65 to 84 months 
(M  =  76.5; SD = 4.3) from German primary schools were tested during the initial 
four weeks of schooling. The testing took place in two individual sessions of 30-40 
minutes each. Problems were presented computer-based or using paper and pencil 
(see below). N = 66 (34 boys, 32, girls) of these children were tested again for their 
curriculum-based mathematic achievement at the beginning of second grade, exactly 
one year after the first testing. Five children from the initial sample could not be tested 
again because they left their respective schools. All statistics were computed with the 
sample of 66 persons. We computed factor scores from the respective subtests for 
phonological awareness, as well as phonological loop, visuo-spatial sketchpad, and 
central executive capacity.

Material. Children received the same computer-based addition (24 items, α = .630), 
multiplication (16 items, α = .242) and division (16 items, α = .560) problems that were 
used in Study 1. Furthermore, groupitizing as a measure of culturally acquired cardinal 
knowledge, was assessed computer-based too (21 items, α = .763): We computed a 
mean precision score, but did not assess reaction time. Up to seven unsorted dots 
were presented on the computer screen for exactly one second. Afterwards children 
had to indicate the amount they had just seen. All children were able to operate in a 
number range up to 10, thus number knowledge was not a problem.

Working memory capacity was assessed with its three components as described by 
Baddeley. Phonological loop capacity was assessed by two different tasks, digit span 
forward and repeating of artificial words. During the digit span tasks, children are told 
increasing spans of numbers (1 to 9), which they had to repeat immediately afterwards. 
The same applies for the pseudowords, which consist of meaningless syllables (i.e. 
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rub-loh-piz). Altogether, the phonological loop scale had 37 items. Reliability was 
satisfactory (α = .78). The visuo-spatial sketchpad capacity was assessed with Corsi 
blocks and matrices tasks. Corsi blocks are nine red wooden blocks presented on a 
210x297 mm wooden plate. Blocks are tapped by the instructor with increasing span 
length, and children have to repeat the tapping immediately afterwards. During the 
matrices tasks children are given an empty 4x4 matrix on a sheet of paper. Then 
different 4x4 matrices are presented to the child, with some fields coloured in grey. 
These have to be indicated on the empty matrix after presentation. Altogether, the 
visuo-spatial sketchpad was assessed with 42 items with good reliability (α = .79).

Central executive capacity was assessed with three tasks, colour span backward, 
digit span backward and listening span. Colour span backward tasks show a pirate 
walking past two (or three) coloured treasure chests. Children are instructed ‘Here is 
a yellow chest and afterwards he passes the blue one. Yellow – blue’ and asked ‘Now 
how is he going back?’, which requires the answer ‘blue – yellow’. The coloured chests 
are used for exemplification reasons only and are not shown during the assessment. 
Digit span backward works like digit span forward (digits 1 to 9), but children have to 
repeat the digits backward. During the listening span tasks children are asked – with 
increasing span – two up to five simple questions, which they have to answer with ‘yes’ 
or ‘no’ (i.e. ‘Is a mouse grey? […] Is a crocodile red? […]’). After each span, children 
have to repeat the colours of all sentences included in this span in the correct order 
(i.e. ‘grey – red’). The central executive scale had 35 items with a reliability of α = .73.

During the naming speed tasks children were presented two 4x4 picture sheets 
with 16 pictures. Each picture represents a one-syllable word, which children have to 
name as fast as possible. The number of correct answers and solution time are assessed 
and combined into one efficiency-score, according to Paas & Van Merriënboer (1993).

Phonological awareness was tested with two subtests. The first subtest was to 
partition words into their syllables and consisted of 10 items (α = .71). Children are told 
a word and have to repeat it by clapping their hands for each syllable of the word. The 
second subtest tested their ability to determine whether two words rhyme or do not. 
This test consisted of 10 items as well (α = .67).

Early arithmetic concepts were assessed with a screening test based on a five-
level model proposed by Fritz, Ricken and Balzer (2009). The test consists of 18 items 
and assesses precise arithmetic problem solving (see Appendix A.2). It is scalable, 
according to the Rasch model, with a WLE person separation reliability of .86. School 
arithmetic achievement at the beginning of second grade was tested with the Demat 
1+ test (Krajewski, Küspert & Schneider, 2002). The test includes math problems for 
most curriculum topics of German first grade mathematics (36 items, α = .88).

Results and discussion

Average achievement scores for approximate arithmetic problem categories, as 
well as means and standard deviations of all other non-standardised variables are 
presented in Table 2. Groupitizing is a percent correct score. Early arithmetic concepts 
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and 2nd grade arithmetic achievement are raw scores of the respective tests. Central 
executive, visuo-spatial sketchpad, phonological loop, naming speed and phonological 
awareness were z-standardised for the sample of 71 children, as a result of computing 
factor or efficiency scores. We calculated correlation coefficients to explore the 
association between the different tasks and problem categories (see Table 3). As 
expected all approximate arithmetic variables correlated significantly with each other. 
We interpret this as a sign of inner coherence within the approximate number system 
above problem categories.

Table 2:	 Mean performance and standard deviation on measures of approximate 
arithmetic, groupitizing, early arithmetic concepts and later school Achieve-
ment in Study 2; Additional t Values and Significances for Approximate 
Arithmetic Problems (One-sample t-Test against M = .500, df = 65).

Task M SD t P
Addition .603 .185 4.497 <.001
Multiplication .699 .129 12.503 <.001
         by 2 .777 .168 13.393 <.001
         by 3 .621 .149 6.624 <.001
Division .673 .138 10.191 <.001
         by 2 .686 .155 9.702 <.001
         by 3 .661 .158 8.290 <.001
Groupitizing 0.763 0.141
Early arithmetic concepts 11.610 2.887
2nd grade arithmetic achievement 30.290 6.012

Table 3: 	Correlations among approximate arithmetic, working memory and other 
cognitive measures assessed in Study 2.

Tasks 1 2 3 4 5 6 7 8 9 10 11

1 Addition .315** .319** .428** .265* .252* .122 .123 .066 .353** .418**

2 Multiplication .275* .186 .248* .253* .214 .066 .024 .262* .180

3 Division .191 .211 .334** .146 .188 .071 .193 .198

4 Groupitizing .497** .309* .299* .258* .262* .314* .582**

5 Central 
Executive

.332** .441** .334** .323** .247* .569**

6 Visuo-spatial 
Sketchpad

.312* .029 .216 .353** .154

7 Phonological 
Loop

.177 .127 .037 .356**

8 Naming Speed .306* .209 .292*

9 Phonological 
Awareness

.039 .288*

10 Early arithmetic 
concepts

.307*
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Tasks 1 2 3 4 5 6 7 8 9 10 11

11 2nd grade 
arithmetic 
achievement 
(Demat 1+)

Note. N = 66; * p < .05; ** p < .01

In terms of cognitive variables our expectations were roughly met, as the approximate 
measures correlated with visuo-spatial sketchpad and central executive capacity. The 
low correlation with the central executive was not expected, but as stated earlier, 
it could be that these problems, as they impose dual task load, are not automatised 
enough to run without any central executive involvement. We interpret this as a sign 
that children just recently acquired the concepts of the four basic arithmetic operations 
and were not able to automatise these concepts. However, the low correlations with 
the three working memory components might reflect the low reliabilities of the 
approximate arithmetic scales – the exact answer remains unclear. Our groupitizing 
measure only correlated with addition, but not division and multiplication problems. 
We interpret this as a matter of training, because groupitizing involved the ability to 
subitise smaller subsets and add those. This correlation can be seen as a clue for the 
idea that these children have some basic cardinal understanding of numbers (Fritz & 
Ricken, 2009), which allows them to simultaneously capture and add the sets they 
see in a half second. This idea is supported by the assertion that the early arithmetic 
concepts variable, which measures this conceptual understanding, is also correlated 
with approximate addition and groupitizing. On the other hand, this correlation 
indicates that approximate arithmetic does not only involve the comparison of 
core system 1, but also some culturally acquired skills. We did not expect significant 
correlation between approximate arithmetic variables and naming speed as well as 
phonological awareness and these expectations were met. 

We conducted a total of two hierarchical regression analyses to explore the 
specific influence of the variables in more detail. In a first step we conducted a 
hierarchical regression analyses to explore in what way groupitizing, working memory 
capacity, naming speed, phonological awareness and early arithmetic concepts 
predict approximate addition. We chose to stick with the addition problems for two 
reasons. In our view addition problems are more age- and curricula-appropriate for 
children in first grade. Furthermore, addition problems had higher reliabilities (and 
thus correlation) than multiplication and division problems. We chose to enter our 
measured constructs into the model in the order in which they arise developmentally. 
As both working memory and the core systems are considered innate – although both 
are of course developing with age – we decided to give priority to the abilities based 
on the core systems to get any innate mathematical abilities out of the way first.

Model 1 revealed that only groupitizing accounted for unique variance of 
approximate addition, even when controlling for all other variables (Table 4). However, 
Model 1 accounted for 24.4% of the variance of approximate addition performance 
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only. Approximate addition seems to be largely independent from any influences 
outside the core systems shown by both the low coefficient of determination and the 
unique influence of all other variables. 

Table 4: 	Regression analyses of approximate arithmetic: unique contribution of 
groupitizing, working memory, naming speed, phonological awareness and 
early arithmetic concepts.

Step Variables & Step summary
Model 1 Approximate addition
B SE β t  

Step 1
Groupitizing .563 .149 .428 3.768 ***

Step 2
Groupitizing .492 .177 .374 2.785 **
Central executive .011 .026 .060 0.421
Visuo-spatial sketchpad .025 .023 .135 1.075
Phonological loop -.012 .026 -.058 -0.448

Step 3
Groupitizing .489 .179 .372 2.724 **
Central executive .010 .027 .055 0.375
Visuo-spatial sketchpad .025 .023 .137 1.074
Phonological loop -.012 .026 -.059 -0.449
Naming Speed .003 .022 .016 0.126

Step 4
Groupitizing .499 .181 .380 2.762 **
Central executive .013 .028 .072 0.483
Visuo-spatial sketchpad .028 .024 .150 1.160
Phonological loop -.013 .027 -.065 -0.492
Naming speed .007 .023 .037 0.287
Phonological awareness -.017 .024 -.092 -0.721

Step 5
Groupitizing .442 .182 .336 2.430 *
Central executive .009 .027 .051 0.344
Visuo-spatial sketchpad .014 .025 .077 0.567
Phonological loop -.005 .027 -.025 -0.186
Naming speed -.001 .023 -.005 -0.035
Phonological awareness -.011 .024 -.058 -0.459
Early Arithmetic Concepts 0.14 .008 .212 1.621

Note. * p < .05 ** p < .01 *** p <.001
Step 1: F(1, 64) = 14.334, p < .001, R² = .183; Step 2: F(4, 61) = 3.874, p = .007, R² = .203, R² 
Change = .020, p = .684; Step 3: F(5, 60) = 3.052, p = .016, R² = .203, R² Change < .001, p = .900; 
Step 4: F(6, 59) = 2.610, p = .026, R² = .210, R² Change = .007, p = .474; Step 5: F(7, 58) = 2.674, 
p = .018, R² = .244, R² Change = .034, p = .110
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In a next step of analyses, we wanted to test our third hypothesis by means of another 
hierarchical regression analyses. We wanted to explore the unique influence of 
approximate arithmetic on school mathematics assessed one year later, controlling 
for other variables like groupitizing, working memory, naming speed, phonological 
awareness and early arithmetic concepts (Table 5). 

Table 5: 	Regression analyses of 2nd grade math achievement: unique contribution 
of groupitizing, approximate addition, working memory, naming speed, 
phonological awareness and early arithmetic concepts.

Step Variables & Model summary
Model 2: Math achievement
B SE β t  

Step 1
Groupitizing 21.057 4.708 .493 4.472 ***
Approximate Addition 6.702 3.580 .207 1.872

Step 2
Groupitizing 14.120 4.866 .331 2.902 **
Approximate Addition 6.761 3.324 .208 2.034 *
Central executive 2.060 0.682 .345 3.022 **
Visuo-spatial sketchpad -0.932 0.605 -.156 -1.540
Phonological loop 0.838 0.680 .129 1.233

Step 3
Groupitizing 13.801 4.927 .323 2.801 **
Approximate Addition 6.731 3.344 .207 2.013 *
Central executive 1.966 0.706 .329 2.786 **
Visuo-spatial sketchpad -0.890 0.613 -.149 -1.451
Phonological loop 0.820 0.684 .126 1.199
Naming Speed 0.327 0.581 .056 0.563

Step 4
Groupitizing 13.282 4.956 .311 2.680 *
Approximate Addition 7.040 3.359 .217 2.095 *
Central executive 1.851 0.715 .310 2.588 *
Visuo-spatial sketchpad -0.983 0.621 -.164 -1.583
Phonological loop 0.867 0.686 .133 1.263
Naming speed 0.192 0.598 .033 0.320
Phonological awareness 0.608 0.618 .100 0.985

Step 5
Groupitizing 12.541 4.966 .294 2.525 *
Approximate Addition 6.142 3.417 .189 1.797
Central executive 1.782 0.714 .298 2.496 *
Visuo-spatial sketchpad -1.237 0.650 -.207 -1.904
Phonological loop 1.023 0.694 .157 1.474
Naming speed 0.043 .606 .007 0.071
Phonological awareness 0.722 .0621 .119 1.163
Early Arithmetic Concepts 0.282 .223 .135 1.261

Note. * p < .05 ** p < .01 *** p <.001
Step 1: F(2, 63) = 18.769, p < .001, R² = .373; Step 2: F(5, 60) = 11.892, p < .001, R² = .498, R² 
Change = .124, p = .004; Step 3: F(6, 59) = 9.580, p < .001, R² = .500, R² Change = .003, p = 
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.576; Step 4: F(7, 58) = 8.577, p < .001, R² = .509, R² Change = .008, p = .329; Step 5: F(8, 57) = 
7.780, p < .001, R² = .522, R² Change = .013, p = .212

Model 2 revealed that only the ability to groupitise and central executive capacity are 
significant predictors of later school success in mathematics. When early arithmetic 
concepts were included into the model (Step 5), approximate addition performance 
was no longer a predictor for later school success, although this might be due to 
multicollinearity, as Step 5 included three different measures of early mathematics. 
The final model accounted for 52.2% of the variance. We interpret this as the main 
finding of our two studies, as it shows, that precise numerical representations and 
cardinality – alongside cognitive capacity represented by the central executive – are 
the main predictors of later school success. This means, a main issue of preschool 
diagnostic and learning should be directed to the question whether children are able 
to understand certain precise concepts, which are needed for formal schooling.

General discussion
In the following, we want to sum up our results and discuss theoretical and practical 
implications of these results for teaching and learning in early primary school. Different 
international large-scale assessments showed that children have severe problems 
with mathematics in higher grades, which leads to lower academic achievement and 
problems on the job market. It is kind of obvious that these problems are not problems 
that come out of nowhere in secondary school. They rather stem from earlier problems 
in understanding basic concepts of exact arithmetic. However, latest research showed 
that children have some basic understanding of all four basic arithmetic operations 
prior to schooling, when they are allowed to solve these problems approximately. 
Although young children can solve approximate problems very well, it is not entirely 
clear whether these abilities help for later school success.

Our main research question for our two studies was to find out what approximate 
arithmetic abilities children have at school entrance age, how these abilities are 
influenced by other variables and whether these abilities predict later school 
mathematics achievement, when controlling for other variables with influence on 
early mathematical skills. We formulated three main research hypotheses based on 
the literature.

Hypothesis 1a stated that children at school entrance age can solve approximate 
arithmetic problems of all basic operations. We found evidence for this hypothesis, 
which is in line with previous research (Barth et al., 2005; 2006; 2009). Additionally, this 
is evidence for the idea that children understand the fundamental concepts of all basic 
arithmetic operations even before formal schooling. Hypothesis 1b had to be rejected, 
because we did not find that addition and subtraction are easier than multiplication 
and division, but that the sequence of difficulty was addition à multiplication and 
division à subtraction from easiest to hardest, which surprised us at first. One 
possible explanation could be that this could be due to the format of presentation. 
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However, addition and subtraction shared a similar format different from division and 
multiplication, which had a similar format as well. As such this cannot explain the order 
we found. However, the division problems asked the children to share things equally 
among several persons, while the multiplication problems could be solved as repeated 
addition problems – which would also imply a basic understanding of multiplicative 
operations. Both – sharing and adding – seem more important to the daily routines 
of children for us, i.e. when asked to add 3 more forks to a table or when sharing toys 
or sweets with other children. However, this is an open field for further research, as a 
more qualitative approach might be fruitful to shed some light on these findings.

The main concern of Hypothesis 2 was the cognitive fundamentals of approximate 
arithmetic and their correlation to other variables. We expected the different 
approximate arithmetic problems to correlate highly with each other and furthermore 
with groupitizing, visuo-spatial sketchpad capacity and early arithmetic concepts. 
Correlation analyses revealed that all approximate arithmetic problem categories 
correlated with each other, some correlations might even be underestimated because 
of the poor reliability of the multiplication and division problems. Additionally, 
regression analyses revealed that the main predictor for addition problems was 
groupitizing, our measure of the culturally learned number representation system 
introduced by Carey (2009). These analyses also revealed that the approximate 
abilities are largely independent from any other cognitive functioning. This surprised 
us at first, as mathematical achievement is usually highly correlated with working 
memory capacity (see DeStefano & LeFevre, 2004, for a review). However, it might 
be that only higher mathematics relies on working memory, as it is implied by the 
high correlations between central executive capacity and groupitizing, as well as early 
arithmetic concepts. On the other hand the more innate approximate arithmetic runs 
on its own cognitive resources, not relying on working memory as much. However, 
another explanation could simply be that working memory load is too low when 
solving approximate arithmetic problems, as these are highly automatized and as 
such do not need enough working memory capacity to be noticeable. Future research 
should also take standardized measures of preschool arithmetic into account to give 
better information about the sample’s general mathematical abilities at the beginning 
of testing. We only used a standardized measure for school arithmetic at the beginning 
of 2nd grade and our sample turned out to be significantly better than average with a 
percentile rank of 67 on a norm-referenced test, t(65) = 5.115, p < .001. Thus, we have 
to be very careful not to overestimate results attained from samples that are above 
norm and generalise them on weaker samples. With all this in mind, Hypothesis 2 had 
to be rejected in terms of early arithmetic concepts and working memory capacity, but 
there is need for further longitudinal research, especially to understand the causalities 
that led to these results.

Hypotheses 3 stated that approximate arithmetic abilities predict later school 
success even when controlling for other variables like working memory or groupitizing. 
Gilmore et al. (2007) showed that these abilities are correlated with mathematical 
achievement measured at the end of kindergarten. Furthermore, Gilmore et al. 



SAJCE– June 2013

16

(2010) even showed that they are predictive for first grade school mathematics 
when controlling for age, intelligence and literacy, but were not predictive when 
taking preschool math knowledge into the analyses. To our knowledge there have 
been no studies investigating the specific influence of approximate arithmetic when 
controlling for groupitizing or working memory in a longitudinal design whatsoever. 
We found that approximate addition is a significant predictor of later school success 
alongside groupitizing and central executive capacity, which is in line with current 
research regarding working memory, the approximate number system and subitizing 
(Bull et al., 2008; Desoete & Grégoire, 2006, Gilmore et al., 2010). Still, the influence 
of approximate addition vanished when controlling for early arithmetic concepts – 
Gilmore et al. (2010) encountered a similar issue. This could be due to the fact that 
our sample was simply too small for the regression analyses conducted and due to 
possible multicollinearity because approximate addition, groupitizing and early 
arithmetic concepts are constructs from a very similar field. However, we believe in 
another explanation, which is simply that approximate arithmetic is an important 
predecessor of skills required for school arithmetic, but what really matters for school 
mathematics are the precise concepts acquired at preschool age, like for example 
the ability to groupitise, which involves cardinal understanding of numbers. The 
groupitizing variable was predictive even when controlling for cognitive variables and 
for other mathematical variables and as such can be used to identify children with 
evolving problems in arithmetic even prior to the start of formal schooling. However, 
further research is needed to find out how to remedy this bad conceptual knowledge 
and whether this remedy leads to better later school success.

A possible objection against our findings could be that we did not include an 
intelligence measure in Study 2 and that most correlations and regressions might 
simply reflect the role of intelligence. We did not do so because we did not get 
parental consent on assessing intelligence from all participating schools. However, we 
believe that this objection does not hold true, because of the very extensive inclusion 
of working memory, which is another good predictor of school learning outcomes, in 
some research even on par with general intelligence (Alloway & Alloway, 2008). For 
further research it might be helpful to include working memory capacity alongside 
spatial and logical intelligence measures to investigate the specific impact of each 
of them.

To sum our results up, we showed that children at school entrance age can solve 
problems of all four basic arithmetic operations approximately, however this ability 
is not predictive for later school success, which is only predicted by central executive 
capacity and children’s ability to groupitise, i.e. their understanding of the cardinal 
number concept. These findings are in line with prior research regarding approximate 
arithmetic (Gilmore et al., 2010) and the development of a precise and unlimited 
number representation system as proposed by Carey (2009).

How can school teaching benefit from these findings? First, even if approximate 
arithmetic is not predictive for school success, we still know that children understand 
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the basic concepts of all four basic arithmetic operations. It is highly correlated with 
other preschool math measures (groupitizing and early arithmetic concepts), which 
means that it might play a role in preschool. Furthermore, this conceptual knowledge 
might be applied in teaching, because another reason why approximate abilities 
are not predictive for later school success, could simply be that schools don’t want 
children to solve problems approximately. If schools make use of existing conceptual 
knowledge, it might be easier for some children to understand curriculum-based 
arithmetic. However, it should also be taken into account that there are large individual 
differences regarding approximate arithmetic proficiency. While it really sounds nice 
to suggest that, ‘children can solve these problems above chance,’ only half of them 
actually do so when analysing individual achievement (see Appendix A.3). This is a 
major issue, which has to be taken into account, before trying to implement the use of 
these abilities into school curricula.

Second, we found that groupitizing predicted school success, even when 
controlling for different other variables. Children could easily be tested for their 
groupitizing skills in a very short time – our groupitizing test usually took us 2-3 minutes 
per child. This would help schools to identify children at risk for later problems with 
school mathematics and give them the opportunity to solve these problems. A major 
issue for upcoming research should be to evaluate conceptual training programs to 
find out whether it is possible to teach these concepts and whether this conceptual 
knowledge is acquired permanently and transfers to school mathematics.
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