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Introduction
Many learners, as well as teachers, often groan with dismay when they hear the word ‘fraction’ 
because it is associated with early experiences in primary school of numbers that did not make 
sense, where rules without reasons were applied. The introduction of fractions is one of learners’ 
first experiences with a math concept beyond the basic skills of whole number arithmetic 
(Chinnapan 2006; Cramer et al. 2009; Siegler et al. 2013; Steffe & Olive 2010). ‘Fraction’ is a word 
that originated from the Latin fractus, meaning ‘broken’ (Rothstein, Rothstein & Lauber 2006). 
This meaning is quite apt, because a fraction represents part of a whole, or more generally any 
number of equal parts. The well-known saying about the glass being ‘half full or half empty’ also 
makes use of fractions. It is important that a child feel comfortable and confident in his 
understanding of fractions. Knowledge of fractions is a building block for other math skills, and 
a successful experience of learning a new concept will help the pre-service teachers gain confidence 
in their ability to teach (Cramer & Wyberg 2009). Consequently, students who possess these 
essential understandings are able to apply their knowledge and explain their actions, 
demonstrating strong links between a range of skills and knowledge, and mathematical 
representations of fractions (Bruce, Chang & Flyann 2013; Wong & Evans 2007).

Fractions are considered an essential skill for future Mathematics success but also a difficult 
concept to learn and to teach (Hecht, Close & Santisi 2003; Newton 2008; Siegler et al. 2013; 
Steffe & Olive 2010; Van Steenbrugge, Valcke & Desoete 2010). A survey of the literature shows that 
there are limitations to learners’ knowledge of fractions (Boyce & Norton 2016; Hackenburg & 
Tillema 2009; Newton 2008; Norton & Wilkins 2009; Reys et al. 2012; Steffe & Olive 2010; 
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Van Steenbrugge et al. 2010; 2014). One reason for this limited 
knowledge of fractions is that the curriculum tends to rush to 
symbolisation and operations without developing the strong 
conceptual understanding that learners must have for 
fractions (Rey et al. 2012). Fractions require much attention 
because they present a hurdle as learners attempt to transfer 
their understanding of whole numbers to a new but related 
class of numbers (Chinnappan & Forrester 2014; Siegler et al. 
2013; Stafylidou & Vosniadou 2004).

Siegler et al. (2013) identified some reasons why fractions are 
experienced as difficult by many learners. They observed 
that some learners incorrectly assume that properties of 
whole numbers apply to fractions. A further problem is that 
of connecting written fractions with the magnitudes they 
represent. Hence identifying and ordering the magnitude of 
different fractions is a challenge for many. A key construct 
that underpins the learning of fractions is the part–whole 
relationship (Siegler et al. 2013). Learners need to understand 
the part–whole relationship between the numerator and the 
denominator or they may treat these numbers as wholes, that 
is, the use of whole number arithmetic operations is 
performed independently on the numerator and on the 
denominator. Sometimes over-reliance on the part–whole 
interpretation of a fraction can lead to problems with 
understanding a fraction such as 4/3. Another source of 
difficulties with fractions is the confusion between the 
relations among the fraction arithmetic procedures. Another 
common type of error in fraction arithmetic is the wrong 
fraction operation error, which involves using steps that may 
be correct for a particular fraction operation but that are used 
in an operation where they are incorrect. For example, Siegler 
et al. (2013) observed learners maintaining a common 
denominator in multiplication of fractions with the same 
denominator, which is correct in the addition of fractions 
with the same denominator (for instance, 1/5 × 3/5 = 3/5).

There is consensus in the teacher education literature that a 
strong knowledge of the subject taught is a core component 
of teacher competence (Baumert et al. 2010). Given that 
teacher education is a crucial period for obtaining a profound 
deep and conceptual understanding of fractions (Borko et al. 
1992; Ma 1999; Newton 2008; Toluk-Ucar 2009; Zhou, Peverly 
& Xin 2006), for effective teaching to take place, there is a 
need to focus on the content knowledge required of pre-
service teachers for a profound understanding of fractions. In 
this study, we use the Action–Process–Object–Schema 
(APOS) theory to try to understand some deficiencies faced 
by pre-service primary school teachers. Many studies have 
been carried out about misconceptions and understanding of 
fractions by school learners (e.g. Cramer et al. 2009; Hansen 
et al. 2017), but fewer studies have being carried out on pre-
service teachers’ understanding of fractions in South Africa. 
Furthermore, the use of APOS theory in pre-service teachers’ 
understanding of fractions in South Africa has not been done. 
APOS studies have been conducted on pre-service high 
school Mathematics teachers’ understanding of various 
concepts, but none on primary school teachers’ knowledge 

(e.g. Bansilal, Brijlall & Trigueros 2017; Ndlovu & Brijlall 
2015). In this article we will consider pre-service teachers’ 
misconceptions that permeate from addition and subtraction 
of fractions using APOS theory.

Literature review
Understanding the notion of fractions
Siegler et al. (2013) point out that the set of whole numbers 
has many properties that are not true of all numbers in 
general. Stafylidou and Vosniadou (2004) list some properties 
of whole numbers that are not shared by the set of fractions. 
For example the symbolic representation of a whole number 
is one number symbol, while a fraction is represented 
symbolically by two numbers separated by a bar. The 
ordering of whole numbers is supported by the natural 
numbers’ sequence, while this is not true for fractions. There 
is no unique successor or preceding number for any fraction, 
as is the case for whole numbers. Furthermore, multiplication 
of two whole numbers makes the number bigger, whereas 
with fractions multiplication may make the number bigger or 
even smaller. It is for these reasons that Siegler et al. (2013) 
argue that the learning of fractions requires a reorganisation 
of one’s numerical conceptions because children who have 
not learnt fractions yet assume that properties of whole 
numbers hold for all numbers. Many authors (Cramer, Post 
& Del Mas 2002; Hackenberg & Lee 2015; Siegler 2013) have 
emphasised that one property shared by all real numbers is 
that they represent magnitudes that can be represented on a 
number line. Hence an important conceptual idea of fractions 
is understanding and differentiating between the magnitudes 
of fractions.

However, helping learners develop these key ideas is not 
easily achieved as is evident from the numerous studies 
focusing on students’ difficulties with fractions (Cramer et al. 
2002; Hackenberg & Lee 2015). The Rational Number Project 
(RNP) reported great success in helping their students 
develop an understanding of the key conceptual ideas and 
identified four types of strategies used in comparisons about 
the magnitudes of fractions (same numerator, same 
denominator, transitive and residual) (Cramer et al. 2002). 
When students compare two fractions with the same 
numerator, they reason that an inverse relationship exists 
between the number of parts a unit is partitioned into and the 
size of each part (e.g. in comparing 3/7 and 3/10, it can be 
deduced that 3/7 is large because a seventh is larger than a 
tenth, and three larger pieces must be bigger than three 
smaller pieces). Reasoning about the order of two fractions 
with the same denominator (using the same denominator 
strategy) requires an understanding that the size of each part 
remains the same but the number of pieces differ (e.g. 
reasoning that 3/7 is greater than 2/7 because 3/7 has three 
parts while 2/7 consists of two of those parts). The use of 
transitive reasoning in ordering two fractions involves 
considering a third fraction that fits between the two so that 
the comparison can be made (e.g. in comparing 3/8 and 4/7, 
the fraction 1/2 can be used to deduce that because 3/8 is less 
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than 1/2, and 4/7 is greater than 1/2, it is clear that 3/8 is less 
than 4/7). The residual strategy identified by Cramer et al. 
(2002:115) is evident when students make a comparison 
based on the size of a ‘missing piece’ (e.g. when reasoning 
about 5/6 and 7/8, it is evident that 5/6 needs a sixth to 
make a whole unit, while 7/8 needs an eighth. Because an 
eighth is smaller than a sixth, it means that 7/8 is larger than 
5/6 (Cramer et al. 2002).

Furthermore, Cramer et al. (2002) find that children taught 
using the conceptually grounded curriculum approach 
(RNP) that focused on making connections between 
different modes of representations, performed much better 
on fraction tasks than those who were taught using 
standard curricula. In the RNP approach, children were led 
to develop an understanding of fractions, magnitude and 
ideas of equivalence, before being introduced to fraction 
arithmetic procedures. The approach did not rely on 
symbolic procedures for deciding on order or equivalence 
of fractions but inculcated a quantitative sense of fractions. 
The authors argued that the reason why the project students 
did so well was because of the extended time they spent 
in engaging with the key ideas of the fraction concept as 
well as the meaning of symbols using multiple methods 
(Cramer et al. 2002).

Hackenberg and Lee (2015:203) use the notion of ‘extensive 
quantity’ (something that can be enumerated or measured) to 
explain the algebraic reasoning of students from a quantitative 
perspective. The authors cite Smith and Thompson (2008), 
who argue that in order to conceive of an extensive quantity 
it is necessary for a student to first understand the key 
property of a measurement unit, which is being able to 
subdivide the quantity into a number of measurement units 
and to then establish some method of counting the number of 
those units to give rise to a measurement or enumeration of 
the quantity. Hackenberg and Lee (2015:204) contend that 
the act of subdividing a length or quantity into equal parts 
could be done by the operations of partitioning (‘marking a 
part or whole into some number of equal pieces’), disembedding 
(‘removing a part from a whole’ mentally, while still 
preserving the mental picture of the whole as a separate 
entity) and iterating (repeatedly adding a part, thus 
accumulating a larger amount). A student who has access to 
an iterative fraction scheme is able to conceive of a fraction as 
multiples of unit fractions; hence 3/8 is seen as three 
multiples of the unit fraction 1/8. With this iterative 
conception, a student will thus be able to make sense of 
fractions that are larger than a whole unit, such as seeing 
11/8 as 11 multiples of 1/8.

Teachers’ knowledge of fractions
Many researchers have investigated what teachers know 
about Mathematics, teaching Mathematics and how 
they know it, since Shulman (1987) coined the notion of 
pedagogical content knowledge. These researchers have 
generally reported low levels of knowledge about teaching 

Mathematics, in particular, pre-service teachers’ lack of 
understanding about whole numbers, fractions and fraction 
operations (Chinnappan & Forrester 2014; Depaepe et al. 
2015; Krauss, Baumert & Blum 2008; Son & Crespo 2009; 
Son & Sinclaire 2010). Chinnappan (2000) examines the 
understanding of fractions of a group of pre-service primary 
Mathematics teachers. The participants were required to 
order fractions using a software tool. The results of the study 
indicated that while the pre-service teachers had built up 
robust knowledge about fractions, they did not exhibit skills 
at using the software to provide pedagogically different 
solutions to the given problem. Chinnappan suggests that 
teacher education programs need to analyse the mathematical 
content and software interface carefully.

Chinnappan and Forrester (2014) distinguish between 
procedural and conceptual knowledge of fractions by pre-
service teachers when examining the impact of an 
instructional model designed to improve the conceptual 
understanding of fraction concepts and operations. The 
authors argue that pre-service teachers come into teacher 
education programmes with knowledge of fractions and 
fraction operations that is mainly about procedures, with 
limited appreciation of the conceptual basis of these concepts 
and operations. The study recommended that pre-service 
teachers can be supported, within an existing teacher 
education programme, in constructing conceptually and 
procedurally robust content knowledge through the 
development of appropriate representations of fraction 
concepts and operations.

According to Hansen et al. (2017), there are many different 
representations and interpretations of fractions. It is 
important that teachers are both aware of and understand 
these interpretations so they can introduce them to children 
in meaningful ways. Teachers also need to be aware that 
some interpretations of fractions are conceptually more 
difficult than others; for instance the part of a whole 
interpretation as an object split into two or more equal parts. 
In addition, Charalambous and Pitta-Pantai (2005) observe 
that the method of teaching fractions as part of a whole was 
necessary but that it was not appropriate to use this as the 
only way to teach fractions. They suggest that teachers 
should develop a deep understanding of the different 
interpretations of fractions.

Ji-Won and Ji-Eunlee’s (2016) study characterise profiles 
of pre-service teachers’ mathematical competence on the 
topic of fraction multiplication by examining pre-service 
teachers’ understanding of multiplication of fractions 
in three different contexts. Analyses of 60 pre-service 
teachers’ written responses revealed that there are distinct 
gradations of competency, ranging from the pre-service 
teachers who were unable to solve a given problem in 
any context to those capable of flexibly portraying an 
understanding of fraction multiplication in three contexts. 
Their findings offered descriptors of how the pre-service 
teachers understood fraction multiplication in different 
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contexts and provided information for the design of 
interventions in teacher education.

A collaborative action research project by Bruce et al. (2013) 
focused on representing, comparing and ordering fractions 
and engaged teacher teams in examining student thinking over 
3 months. The study revealed that comparing and ordering 
fractions allows students to develop a sense of fractions as 
quantity, as well as a sense of the size of a fraction, both 
necessary prior knowledge components for understanding 
fraction operations. Although the learning progression is not 
linear, there are some strongly interconnected components 
that support students’ understanding of subsequent concepts.

A study by Isik and Kar (2012) used a case study analysis of 
the type of error committed by pre-service elementary 
Mathematics teachers in Turkey. Seven types of errors were 
identified: unit confusion; assigning natural number 
interpretations to fractions; problems using ratio proportions; 
being unable to establish part–whole relationships; dividing 
by the denominator of the divisor; using multiplication 
instead of division; and increasing errors by inverting and 
multiplying the divisor fraction. Similarly, the study by 
Tobias, Olanoff and Lo (2012) demonstrate that pre-service 
teachers tend to ‘have a rule-based conception of fraction 
multiplication and division’ (p. 671) and have ‘misconceptions 
that resulted from overgeneralised rules from other number 
systems, such as multiplication always makes bigger, or 
result from inability to understanding algorithms for 
multiplying and dividing fractions’ (p. 671).

Theoretical framework
This study is based on APOS theory, which proposes that an 
individual has appropriate mental structures built up 
through particular mental mechanisms, to make sense of a 
given mathematical concept. The mental structures refer to 
the likely actions, processes and objects required to learn the 
concept, organised in schemas to make sense of the situations 
(constituting the acronym APOS). Dubinsky (1991) also 
identifies mental mechanisms, such as interiorisation, 
coordination, reversal, encapsulation and generalisation, 
involved in the mental construction development. An action 
is physical or mental transformation of a mathematical entity 
in response to an external stimulus. As an action is repeated 
and reflected upon, it can get interiorised into an internal 
mental construction called a process in which the person can 
think of forming the same kind of action but no longer with 
the need for external stimuli. The process is encapsulated into 
an object when the individual becomes aware of the process 
as a totality and realises that transformations can act on it. At 
this stage a person can distinguish between and compare 
objects arising from similar processes. A schema for a 
mathematical concept is a mental collection of actions, 
processes, objects and other schemas, which are linked to 
form a coherent framework for an individual (Dubinsky & 
McDonald 2001).

Research based on this theory requires that for a given 
concept the likely mental structures be identified, detected 

and then suitable learning activities designed to support the 
construction of those mental structures. One of the major 
tools used in APOS-based research is genetic decomposition 
(GD), which is a hypothetical model of mental construction 
that a student may need to make in order to learn a 
mathematical concept (Arnon et al. 2014). So, a GD postulates 
the particular actions, processes and objects that play a role in 
the construction of a mental schema for dealing with a given 
mathematical situation. The details of the preliminary GD 
used in this analysis appear below.

Genetic decomposition for operations  
on fractions
We draw upon Hackenberg and Lee’s (2015) work in terms of 
fraction schemes to make sense of the action–process–object 
development of the concept of fractions. The fraction scheme 
highlighted is an iterative fraction scheme in which fractions 
are conceived of as multiples of unit fractions (Hackenberg 
2007; Steffe & Olive 2010). For example students who have 
constructed an iterative fraction scheme view 2/5 as 2 times 
1/5, and 7/5 as 7 times 1/5, which means these students 
have constructed fractional numbers (Steffe & Olive 2010). 
Moreover, students who have constructed iterative fraction 
schemes can usually solve a problem in which they are given 
an improper fractional number. For instance to make the 
whole, students need to view 14/9 as 14 times the amount 
they need to iterate 9 times to make the whole, which involves 
operations that students with iterative fraction schemes have 
constructed.

Prerequisite: Understanding of multiplicative 
concepts
How students generate and coordinate composite units is the 
foundation of how we understand students’ multiplicative 
concepts. These multiplicative concepts are the interiorised 
results of students’ units coordinating schemes as they 
progress from one concept to the next (Hackenberg & Lee 
2015).

Prerequisite: Understanding of the  
concept of fraction
Action
At an action level a person sees a fraction as representing a 
part of a whole, where the numerator is identified in terms of 
the number of shaded or selected equal parts while the 
denominator is the total number of equal parts that the whole 
has been divided into. At this stage the individual is able to 
make sense of unitising a fraction by the operation of 
partitioning or splitting a whole into a certain number of 
equal parts (Hackenberg & Lee 2015). For example, a learner 
can identify the figures as representing the fractions given 
(see Figure 1).

Process
As a learner continues working with the physical 
representations, the action of the operation of partitioning is 
interiorised so that individuals can recognise a fraction 
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without having to physically count each part, that is, they are 
able to carry out the process of partitioning mentally. At a 
process level a learner is not restricted to a physical 
representation when working with fractions but can work 
with the symbolic representation of 3/5 as representing 3 
parts out of a whole of 5 parts.

Object
The process of partitioning is encapsulated into an object 
when the individual is able to conceive the partitioning 
process as fractional numbers (Steffe & Olive 2010) upon 
which the multiplicative operations can be carried out. 
Hence at this stage an individual’s conception of fractions 
will have been extended into an iterative fraction scheme 
(Hackenberg & Lee 2015), allowing him or her to make 
sense of the symbol 5/8, say, as being equivalent to 5 × 
1/8. This flexible notion of fractions allows the individual 
to make sense of an improper fraction such as 11/8. The 
object conception also enables students to distinguish 
between and compare the results from different 
partitioning schemes. Hence the iterative fraction 
conception permits the individual to ‘take three level of 
units and flexibly switch between three-levels-of-units 
structures’ (Hackenberg & Lee 2015:206) – so, for example 
if a quantity is divided into units of 35, this can be 
represented as 5 units each composed of 7 subunits, or 
equivalently as 7 units each composed of 5 subunits. This 
iterative fraction skill is key to understanding equivalent 
fractions

Addition and subtraction of fractions
The mental structures for addition and subtraction are similar 
to each other, so we will describe them with respect to 
addition, but they can be the same for subtraction as well.

Action
To add fractions, a learner requires diagrams or physical 
representations to carry out the addition operation. The 
learner performs a single operation at a time, without 
thinking beyond the action of the single addition operation; 
for example, the addition operation 1/4 + 1/4 = 1/2 needs to 
be represented as fractions using a pizza diagram or any 
other figure, as shown in Figure 2.

If the fractions have different denominator, say ½ and ¼, then 
the learner would first transform the fractions into equivalent 
ones that share a common denominator, so that the action of 
putting them together can be done. They may require a 
physical representation to substitute one part of size 1/4, say 
with two parts of size 1/8, if considering the sum 1/4 + 3/8, 
for example.

Process
The action of adding two fractions is interiorised into a 
process when a learner can carry out the addition operation 
without requiring physical representation. To add fractions 
with different denominators a learner will first transform 
fractions mentally or symbolically into equivalent fractions 
that share a common denominator so that the fractions can be 
added.

Object
When a learner becomes aware of the process of adding 
two like fractions as a totality, realises that transformations 
can act on that totality and can actually construct such 
transformations (explicitly or in one’s imagination), then we 
say the individual has encapsulated the process of adding 
fractions into a cognitive object called a ‘sum of fractions’. 
For example, a learner could find multiples of a sum of 
fractions or explain the properties of the sum of fractions, 
such as showing that the sum of fractions is commutative. At 
this stage a learner is able to distinguish between the results 
of objects arising from similar processes. Hence a learner can 
perceive the equivalence between the two processes of 
adding two fractions with different denominators – for 

example in finding the sum 1
3

 5
7

+  using equivalent  
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3

5
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21
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21
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+ = + = ) and using the algorithm  

(
) )( (

+ =
+
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3

  5
7

1 7 5 3
21
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). That is, the one process that uses 

transformation into equivalent fractions with the same 
denominator first, before finding the sum, is equivalent to the 
algorithm for adding fractions with different denominators.

Pseudostructural conception
Sfard and Linchevski (1994) argue that sometimes learners 
do not progress to connecting the different mathematical 
relationships so as to build a coherent mathematical object. 
Instead of developing an object-level (or structural) 
understanding of a concept, they develop a pseudostructural 
conception. This occurs when the understanding of a concept 

¼

½

FIGURE 1: Fraction scheme.

2
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=

=

=
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+

FIGURE 2: Addition and subtraction of fractions.
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is not sufficiently robust to be considered as structural (that 
is, an object conception). This may be because of some 
misconceptions that may interfere with the action–process–
object hierarchical development of the concept proposed 
by APOS theory; hence a pseudostructural conception 
can also arise when incorrect actions are interiorised. 
Misconceptions are often represented at an action level 
because of the concepts that were misconstrued at the 
inception level, that is, the level at which the concept is 
presented to learners. The manner in which the concept is 
presented will determine the representation of the concept 
procedurally through the correct or wrong answers 
displayed by the learner or spoken by the learner. Usually 
as students are exposed to further learning opportunities 
and as they work on the activities, problems relating to 
errors associated with incorrect actions may get resolved as 
a natural progression. However, it may happen that an 
incorrect conception of an action may get interiorised into 
a process, giving rise to a problem that is much more 
difficult to address because it has become embedded into 
the learner’s mental schema of the concept. In this study 
we explore some incorrect notions of addition and subtraction 
of fractions that appear to have become interiorised into 
pseudostructural conceptions.

Methodology
The participants of this study comprised 60 undergraduate 
full-time students, who were enrolled in a 3-year Bachelor 
of Education degree to become teachers. The 60 participants 
were enrolled in a foundational course in Mathematics 
because they had not passed Mathematics at Grade 12 level. 
This course was intended to help deepen their understanding 
of basic numeracy, including aspects such as operations on 
fractions with respect to meaning and use of representation. 
These students were all primary school pre-service teachers 
and would take on further primary Mathematics Education 
courses, having passed the basic course. This study was 
interpretative in nature as it recognised that individuals 
with their own varied backgrounds and experiences 
contribute to the ongoing construction of reality (Wahyuni 
2012). Data to gauge pre-service teachers’ misconceptions 
that permeate from addition and subtraction of fractions 
were obtained from the participants’ responses to a written 
task (see Appendix 1) that was designed to probe their 
understanding of fractions. Participants who did not get all 
the items correct were invited for interviews. Ten students 
volunteered and thereafter met with the first author, who 
then conducted semi-structured interviews. In this article, 
we draw upon three of these interviews. The interviewees 
were probed generally about their understanding of 
fractions and more specifically about their responses to the 
written task.

The research question explored in this study is: What are 
the pre-service teachers’ misconceptions that permeate 
from addition and subtraction of fractions that can be 
described using APOS theory? The preliminary GD presented 

in the section ‘Genetic decomposition for operations on 
fractions’ served as an analytical tool for the study.

Ethical consideration 
We got the approval of the students who happen to be our 
student before using their script and interview extract in 
writing the article.

Results and discussion
The results of the activity test, which comprised two tasks 
with sub questions (see Appendix 1), and the interview 
extracts will be discussed in the following section.

Task 1
This first task (which appears in Box 1) explored the pre-
service teachers’ understanding of addition of fractions. The 
participants’ percentage responses with respect to completely 
correct responses, wrong responses and no response are 
shown in Table 1.

All participants responded correctly to Q1.1 and Q1.3, which 
involved the addition and subtraction, respectively, of 
fractions with the same denominator. This could indicate that 
all participants had developed at least an action conception 
of addition of fractions. However, the success rate dropped to 

48.3% in Q1.2 ( 2
3

 1
5

+ ) and approximately 40.0% for Q1.4  

( 4
5

– 1
3

). The difference between the items is that the former 

items (Q1.1 and Q1.3) involved fractions with the same 
denominator while the latter involved fractions with different 
denominators. To add or subtract fractions that have different 
denominators, one needs to first convert the fractions into 
equivalent ones that share a common denominator. This 
involves applying the operation of subunitising the units 
making up the two fractions. This involves a transformation 
or operation on the fraction, which according to our GD can 
be effected only when the person sees the fraction as an object 
upon which transformations can take place. Drawing upon 
language used in recent studies (Boyce & Norton 2016; 
Hackenberg & Tillema 2009; Steffe 2001), forming equivalent 
fractions with a different denominator from the one given 
requires a flexible understanding of the iterative fraction 
scheme.

BOX1: Task 1.
Simplify the following fractions, leaving your answers as fractions. Show all your 
workings. (1.1) 1

3
2
3

+  

(1.2) 2
3

1
5

+  (1.3) 2
4

1
4

−  (1.4) 4
5

1
3

−

TABLE 1: Total number of participants’ responses to Task 1.
Task 1 item Correct response

n (%)
Incorrect response

n (%)
No response

n (%)

1.1 60 (100.00) - -
1.2 29 (48.33) 20 (33.33) 11 (18.33)
1.3 60 (100.00) - -
1.4 24 (40.00) 23 (38.33) 13 (21.67)
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Alternatively students may opt to use the lowest common 
denominator (LCD) addition–subtraction algorithm, requiring 
that they find the LCD of the two fractions. Some of the 
students who worked out the addition and subtraction tasks 
correctly may well have opted for the algorithm so it is not 
possible to gauge their own understanding of fractions 
because the students were not interviewed and their working 
details did not provide sufficient evidence of the method they 
used. The incorrect responses, however, show that for many 
of the participants, it was their conception of a fraction that 
had hampered their progress in understanding the addition 
of fractions. It is clear that at least 20 participants (33.3%) 
who provided wrong responses to Q1.2 had not progressed 
past seeing a fraction as two numbers separated by a line and 
had not developed a process (or partitive fraction). Of the 
20 participants, eight participants wrote down the question 
but could not solve further, while the other 12 participants 
displayed a common misconception of using fractions as two 
separate whole numbers, as illustrated by T57’s response in 
Figure 3.

Participant T57 was interviewed about his approach to 
addition. See response in Box 2, where T57 stands for 
Participant T57 and A is the first author of the article.

T57 explained that he got the answer he did considering the 
sum as two whole number sums: the sum of the two 
numerators and the sum of denominators. The response of 
T25, which appears in Figure 2, illustrates similar reasoning. 

Siegler et al. (2013) argue that the learning of fractions 
requires a reorganisation of one’s numerical conceptions 
because children who have not learnt fractions yet assume 
that properties of whole numbers hold for all numbers. In the 
case of this common misconception, it is evident that the 
students such as T57 and T25 incorrectly applied properties 
of whole numbers in two disconnected procedures applied 
separately to the numbers appearing above the line and the 
ones appearing below the line. The responses illustrate that 
the students have not been able to consider the issue of 
fractional value or magnitude of fraction, key ideas that form 
a foundation for further work in fraction operations (Cramer 
et al. 2002. Moreover, Bailey et al. (2015) argue that learners 
who do not understand the fractional value are significantly 
disadvantaged in studying fraction procedures because 

they cannot predict arithmetical relationships. For example 

(using Figure 3, in adding 
2
3

 1
5

 + , the result should be greater 

than 2
3

; thus, the students would think again about the 

answer of 3
8

 because 3
8

 is far smaller than 2
3

. Similarly, 

if Participant T25 in Figure 4 understood the concept of 

magnitude of fractions, he would have reasoned that the 
difference between two fractions, both of which are less than 
one, could not be greater than one. The indication of the 
responses in Figures 3 and 4 is an indication that the pre-
service teachers did not understand that the need for a 
common unit is universal for all addition and subtraction; 
they could not readily connect their understanding of whole 
number addition to other number systems, such as fractions. 
Therefore they were unable to build a central conceptual 
framework for understanding the principles of addition and 
subtraction across all number systems.

We now look in more detail at the interview with Participant 
T25, which provides more insight into his conception of 
fractions and the operations of addition and subtraction. In 
the interview, Participant T25 was asked to explain the idea of 
a fraction (see Box 3).

The extract in Box 2 shows that T25 does not consider it 
important for the pieces, and being compared in the fraction, 
to be equal. His response is a counter indication of an 
understanding of the part–whole fractional conception 
(Norton & Wilkins 2009). Boyce and Norton (2016) describe 
the part–whole conception as the first of five fraction 
conceptions (schemes), which seem to develop in sequence. 
Clearly Participant T25, almost 20 years after being introduced 

FIGURE 3: The response of T57 to addition of fractions with different 
denominators. FIGURE 4: The written response of T25 to subtraction of fractions.

BOX 2: Interview extract (T57).

A: Looking at the items, I can see that your answer is 3
8

. Can you explain how you 
got this answer?
T57: Because 2 + 1 = 3 and 3 + 5 = 8, so the result is 3

8
.

BOX 3: Interview extract (T25) about the idea of a fraction.
T25: Er, er, fraction is basically about knowledge about division of an object. For 
example, we are five in a room, and we have one orange we need to share, so we 
cut it in pieces so that it will accommodate all of us.
A: Must the cutting be equal?
T25: Not exactly; it depends on choice.
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to fractions, was still missing a key idea underpinning the 
part–whole conception: a fraction is the ratio of the number 
of equal parts in a selected group to the number of equal parts 
in a larger group.

The interview proceeded to the subject of addition and 
subtraction of fractions with the same denominator (see Box 4).

As explained in Box 3, T25 can bring selected parts of a group 
together and add up (or take away) the number of selected 
pieces and compare it to the total number of pieces in the 
bigger group. Hence his action level conception of a fraction 
allows him to consider adding or subtracting fractions as 
long as the denominators are the same. However, as seen in 
Figures 3 and 4, this limited conception does not allow him to 
work out the sum or difference fractions that do not have the 
same denominator. 

The participant’s explanations of addition and subtraction of two 
fractions which have different denominators appear in Box 5.

The extract in Box 4 shows that, when asked about addition 
and subtraction of fractions that have different denominators, 

T25 still tried to explain them in terms of the number of 
selected pieces divided by a new total of pieces. However, 
the total number of pieces that T25 referred to was not linked 
to the actual situation of counting the physical pieces. T25 

recognised that his answer 3
2

 did not make sense but thought 

it was a problem with the task given and not with his own 
interpretation. There was no longer one whole but two 
wholes (represented by the two situations), which T25 could 
not account for. Hence, because his understanding of fractions 
remained at the action level, it did not allow him to explain 
the procedure of adding or subtracting in terms of his number 
of selected pieces over the total number of pieces conception. 
Hence he could not progress further than adding two 
fractions with the same denominator. His explanation 
about subtraction is consistent with the written response in 
Figures 3 and 4, being the same as his verbal explanation. 
Notably, he had no scheme to provide an explanation of 
subtraction when the first denominator was smaller than the 
second one and deduced that the answer was zero.

It is clear that the participant’s understanding of fractions 
was embedded within the physical representation of the 
number of selected pieces divided by the total number of 
pieces, and the action had not been interiorised. The fraction 
was not seen as an object upon which transformations can be 
carried out, and the participants were unable to distinguish 
between the object arising from the process of addition or 
subtraction of fractions with the same denominator and the 
object arising from the process of addition or subtraction of 
fractions with different denominators. Because the participant 
did not understand the part–whole relationship between the 
numerator and the denominator, he treated these numbers as 
whole numbers. He instead constructed a pseudostructural 
conception to help him deal with addition or subtraction of 
fractions with different denominators. However, when 
subtracting part–whole fractions, they must attend to the 
unit (the number of pieces the whole has been partitioned 
into) before subtracting quantities. As learners transition 
from whole numbers to other number systems, including 
fractions, explicit attention to and naming of the unit is 
important so that they develop this understanding. Although 
unit fractions have not typically been a central focus in 
fraction teaching in South Africa, according to researchers 

like Pienaar (2014), students need to be able to think of 4
5

 as 

‘4 one-fifth units’, which is necessary in an iterative fraction 
conception (Boyce & Norton 2016). The responses discussed 
in Figures 3 and 4 are an indication that pre-service teachers 
did not understand the need for a common unit or for the 
operation of unitising the two fractions into a common unit.

Task 2
The second task, presented in box 6, explored the participants’ 
understanding of multiplication and addition of fractions. 
The results for the tasks are presented in table 2.

Box 6 shows that 46.7% of the participants solved Q2.1 (½ ×  

[ 2
3

1
5

+ ]) correctly, while 41.7% completed the Q2.2 correctly. 

BOX5: Interview extracts (T25) about addition and subtraction of fractions with 
different denominators.

Addition
A: Alright, what if you are asked to add two fractions with different denominators, 

for instance 2
3

1
5

+ ?

T25: In this case, we have two people again, the first person take two portions out 
of three pieces of cake and the other person takes one portion out of five pieces 
of cake. Then, mmm, the total will be three portions out of eight pieces of cake. 
Therefore, 2

3
1
5

3
8

+ =

A: In a situation where you are asked to subtract one fraction from another, for 

instance 4
5

1
3

− ?

T25: Mmmm, still [the] same two people; first people took four portions out of 
five pieces of cake and the other person took one portion out of three pieces of 
cake. Now I’m going to subtract, so it will be three portions remaining out of two 

pieces of cake. So 4
5

1
3

3
2

− = .

A: Is it possible to have three portions out of two pieces of cake?
T25: Not really [shrugging his shoulders] but it is subtraction and the fractions you 
gave me.

A: What if you are given 1
2

1
3

− ?

T25: Eeeehh, the answer will be zero.
A: Why?
T25: Because 2 – 3 is not possible and 1 – 1 is zero, so the answer will be zero.

BOX 4: T25 interview extracts (T25) about addition and subtraction of fractions 
with the same denominator.

Addition
A: Now when you are given two fractions that have same denominator and you 
are asked to add them, what do you do? Let’s say, 2

5
1
5

+ ?

T25: First I think that I have two people that should take portion out of five pieces 
of cake, then one person take two portion out of the five pieces of cake and the 
other person takes one portion out of the same five pieces of cake. Then I ask 
myself, how many portions did the two people take and it is three portions out of 
the five pieces of cake. So 2

5
1
5

3
5

+ =

Subtraction

A: Suppose you are given ¼ + a = 
2
4

, what is a?

T25: Mmm, that means one out of four plus something is equal to two out of four 
… I think it will be 2

4
. Wait, let me check if am correct, ¼ + ¼ = 2

4
. Yessss am 

correct, a = ¼.
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The responses revealed similar errors with fraction addition 
as those identified in the previous task. We look in more 
detail at the response of Participant T38 (Figure 5), which is 
followed by extracts from the interview with her. 

Figure 5 shows that the participant followed the BODMAS 
(bracket, of, division, multiplication, addition and 
subtraction) rule by adding the fractions inside the bracket 
first (this is the correct procedure done by all the participants 
in the incorrect response group). Her method of adding was 
incorrect because she applied whole number addition to the 
two numerators and denominators. Her multiplication was 
done correctly. The fascinating aspect of this response is that 
the incorrect method of adding the fractions was done so 
consistently in the two questions that she obtained the same 
result for both. Box 7 presents the dialogue between the 
author and Participant T38 in the interview.

The response from the interview confirmed that the student 
had used the method of whole number addition applied to 
the numerators and denominators. The written response of, 
and interview with, Participant T38 shows how strongly 
embedded her pseudostructural conception of addition of 
fractions had become. Hence it is clear that this incorrect 
method had become interiorised into a pseudostructural 

‘process’ to the extent that she was able to carry out 
transformations on this ‘process’ of addition of a fraction by 
multiplying it by other fractions, using the correct method. In 
fact she obtained the same answer to both problems using this 
pseudostructural rule, based on whole number addition. That 
is, she showed that with her rule in Equation 1 it was true that:

× + = × + ×( 2
3

1
5

)  2
3

 1
5

1
2

1
2

1
2  [Eqn 1]

This relationship is true in general for fraction multiplication 
and addition because the operation of multiplication is 
distributive over addition. The question that arises is whether 
this result will hold true in general if the incorrect rule is 
used. In other words, using this incorrect rule for fraction 
addition, will multiplication be distributive over this 
incorrect addition rule? To see this, given fractions a

b
c
d

,   

and e
f

, using the participant’s pseudostructural rule, we 

investigate the product of a
b

 and the sum of the other two 

fractions, c
d

 and e
f

 , and get the result for Q2.1 in Equation 2:

a
b

c
d

e
f

a
b

c e
d e

a c e
b d f

  (  )    
 
( )

( )× + = × +
+

=
+
+

 [Eqn 2]

Now if we work out the sum of the products in Q2.2, the 
result is shown by Equation 3:

)
)

(
(× + × = + = +

+
=

+
+

(  ) (   )a
b

c
d

a
b

e
f

ac
bd

ae
bf

ac ae
bd bf

a c e
b d f

 [Eqn 3]

FIGURE 5: The response of T38 to multiplication and addition of fractions with 
different denominators.

TABLE 2: Total number of participants’ responses to Task 2.
Task 2 item Correct response

n (%)
Incorrect response

n (%)
No response

n (%)

2.1 28 (46.67) 24 (40.00) 8 (13.33)
2.2 25 (41.67) 25 (41.67) 10 (16.67)

BOX 6: Task 2.
Simplify, leaving your answer in fraction. Show all your workings.

2.1) ½ × (
2
3

1
5

+ )

2.2) ½ × 2
3

 + ½ × 
1
5

BOX 7: Interview extracts (T38) about Q2.1 and Q2.2.
Explanation of Q2.1
A: Looking at the items in Task 2 of the activity test, what do you do when asked 
to simplify the fraction × +1

2
(2
3

1
5
)?

T38: Mmmmm, I think with BODMAS rule I am going to start with bracket

Step 1: + =2
3

1
5

3
8

Step 2: ½ × =3
8

3
16

A: Why did you multiply the numerators and the denominators as you did in the 
addition?
T38: Yes ma’am, in addition and subtraction of fractions you add or subtract the 
denominators and the numerators, as the case may be. You know, multiplication 
is same as repeated addition, so in multiplication and division, which you have to 
change to multiplication, you also have to multiply the numerators and 
denominators separately.
A: So the rule is that you work on the numerators separately, using the given 
operation, and the denominators separately as well, using the said operation?
T38: Yes, that is the rule.
Explanation of Q2.2

A: I can see that your answer to Item 2.2, that is, 2
3

, is 3
16

? How did you get it?

T38: Mmmmm, I think with BODMAS rule am going to start with multiplications 
first:
Step 1: × =1

2
2
3

2
6

Step 2: × =1
2

1
5

1
10

Step 3: + =2
6

1
10

3
16

, that is the answer.

A: So in addition, subtraction and multiplication you work on the numerators and 
denominators separately using the given operation?
T38: Yes ma, that is the rule.

BODMAS: bracket, of, division, multiplication, addition and subtraction
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The algebraic verification shows that the participant’s 
consistent application of her pseudostructural rules gives 

rise to the same incorrect answer of 
a c b
b c e

( )
( )

+
+

 for both 
Question 2.1 and Question 2.2.

Hence, it can be seen that the correct rule for multiplication is 
actually distributive over the pseudostructural rule of 
addition. This distributive property helps us to understand 
how this incorrect rule has become so widely used 
and applied. It is closely aligned to whole number addition 
facts and satisfies certain properties that are satisfied by the 
correct rule.

Concluding comments
This article studied 60 pre-service teachers’ responses to 
questions involving the basics of fractions. The questions 
involved operations on fractions with the same denominator 
and fractions with different denominators, in order to explore 
their mental constructions of the understanding of operations 
on fractions using APOS theory. The findings reveal that 
many teachers were able to answer those items requiring 
action level engagement with the addition and subtraction of 
fractions with the same denominator but struggled with 
those that required higher levels of engagement. Although all 
the participants answered Items 1.1 and 1.3 correctly, more 
than 52% of the participants could not respond correctly to 
Items 1.2 and 1.4, indicating that the participants had not 
developed object-level conceptions of addition and 
subtraction of fractions. The analysis of the responses and the 
interviews showed that a common reason for the non-
encapsulation of addition and subtraction of fractions was 
because of their weak conceptions of what a fraction entails. 
For many students their notion of fractions was that of a 
numerator, which represents the number of selected pieces, 
and a denominator, which represents the total number of 
pieces. A key idea that was missing from this fraction 
conception was the notion of the equality of the pieces: a 
fraction is the ratio of the number of equal parts in a selected 
group to the number of equal parts in a larger group.

It is likely that for these students their learning experiences 
neglected the action level of development of the part–whole 
conception of fractions. The addition of fractions could not 
make sense beyond working with like fractions. They were 
able to add fractions with the same denominators by 
considering the action of putting pieces together, without 
having to check the sizes of the pieces. However, this 
conception does not work for addition of fractions with 
different denominators, because the difference in 
denominators means that the sizes of the pieces are different, 
so putting together pieces of different sizes cannot lead to a 
measurement of a fraction. Instead some students, such as 
T38, had instead interiorised an incorrect rule for addition 
(and subtraction) of fractions with different denominators 

that arose from their idea of portions of a cake. So 2
3

 was seen 

as 2 parts out of a total of 3 parts, while 1
5

 is seen as one part 

of another five parts, and adding them means getting three 
parts out of a new total of eight parts. This resulted in a 
strongly embedded pseudostructural rule for addition and 
subtraction. The rule was based on whole number addition 
and it was shown to satisfy the property of fraction 
multiplication, being distributive over the incorrect fraction 
addition rule.

There is much concern in the literature about the poor 
background of primary school learners in basic Mathematics, 
which hinders them from progressing sufficiently in higher-
level Mathematics (Hckenburg & Tillema 2009; Siegler et al. 
2013; Steffe 2001). There is also concern that primary school 
teachers may not have sufficiently strong subject matter 
knowledge themselves (Mupa & Chinooneka 2015; Van 
Steenbrugge et al. 2014). This study has shown that some 
primary school teachers have misconceptions about the basic 
operations on fractions and can work only in an externally 
driven manner (action level) on fraction operations. More 
alarming is the fact that these incorrect procedures have 
become interiorised by these students, becoming deeply 
embedded in their mental schema. Hence they may 
unwittingly teach these incorrect versions to their learners 
when they start teaching, if these misconceptions are not 
confronted and resolved. This study recommends that 
programmes for upgrading pre-service teachers should be 
carefully structured to allow them to work with basic 
concepts such as the basic operations in fractions. The quality 
and target of the learning opportunities afforded to the pre-
service teachers should be evaluated, so that such strong 
misconceptions can be addressed. 
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Appendix 1: Activity test items.
Task 1

Simplify the following fractions leaving your answers as fractions. Show all your 
workings. (1.1) +1

3
2
3

 

(1.2) +2
3

1
5

 (1.3) −2
4

1
4

 (1.4) −4
5

1
3

Task 2
Simplify leaving your answer in fraction. Show all your workings.

2.1) × +(2
3

1
5
)1

2

2.2) × + ×2
3

1
5

1
2

1
2
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